首页|基于改进蜉蝣优化算法的机器人磁定位方法

基于改进蜉蝣优化算法的机器人磁定位方法

扫码查看
针对现有物流机器人自主导航停车充电方案在远距离时停车定位精度差,造成自动回充模式下移动机器人无法对准充电桩的难题,提出一种基于改进蜉蝣优化算法(MA-LM)的物流机器人停车定位方法.本文方法将多个磁传感器阵列的磁钉定位数据融合,提高物流机器人停车定位的定位精度和定向精度.为了量化评估磁钉定位的提升效果,本文方法使用9个磁传感器组成的传感器阵列和两轮差速移动机器人在充电桩场景测试.相较于遗传优化算法和粒子群优化算法,本文提出的MA-LM算法的定位精度具有优势,在停车定位环节使用MA-LM算法的物流机器人达到定位精度±1.65 mm和定向精度0.9°.
Parking Positioning Method for Automatic Guided Vehicle Based on MA-LM Algorithm
To address the challenge that autonomous navigation parking and charging solutions have poor positioning accuracy at long distances,resulting in AGVs not being able to align with the charging pile in automatic charging back mode,a parking posi-tioning method based on an improved mayfly optimization algorithm(MA-LM)is proposed.This method fuses the magnetic nail positioning data from multiple magnetic sensor arrays,thereby improving the position accuracy and attitude accuracy of the park-ing positioning.To quantitatively evaluate the improvement effect of magnetic nail localization,this method is tested in a charg-ing pile scenario using a sensor array of nine magnetic sensors and a two-wheeled differential speed mobile robot.Compared with the genetic optimization algorithm(GA-LM)and the particle swarm optimization algorithm(PSO-LM),the experimental results show that the MA-LM algorithm has the localization accuracy of±1.65 mm and the orientation accuracy of 0.9°in the parking lo-calization.

automatic guided vehiclemayfly algorithmmagnetic nail navigationparking positioningcharging station navigation

张源超、杨贵志、薛广、姚瀚晨、彭建伟、戴厚德

展开 >

厦门理工学院电气工程与自动化学院,福建 厦门 361024

厦门市高端电力装备及智能控制重点实验室,福建 厦门 361024

中国科学院福建物质结构研究所,福建 福州 350002

物流机器人 蜉蝣优化算法 磁钉导航 停车定位 充电桩导航

福建省中青年教师教育科研项目中央引导地方科技发展专项

JAT2004872021L3047

2024

计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
年,卷(期):2024.(5)