首页|基于可见-近红外光谱法无损检测梨总酸含量

基于可见-近红外光谱法无损检测梨总酸含量

扫码查看
梨作为日常生活中人们最喜爱的水果之一,其总酸含量对梨的口感和品质影响很大,因此无损检测梨中总酸含量具有良好的应用前景.本文采集240个赣北成熟梨样本的近红外光谱数据,以随机的180个梨样本作为校正集,60个未知样本作为预测集,以去除首尾处噪声后的400~1800 nm范围的1401个波长点进行研究分析.采用SG平滑法(SG smoothing)以及基线校正法(Baseline offset correction)对原始光谱数据进行预处理,通过偏最小二乘回归(PLSR)数学模型确定SG平滑法对原始光谱的预处理效果最为显著;并利用竞争自适应重加权(CARS)和连续投影算法(SPA)提取了光谱特征波长.同时,结合PLSR与LS-SVM这2种分析方法建立总酸含量的预测模型.其中,CARS+LS-SVM预测模型对梨总酸含量预测效果最佳,R2p值为0.901,RPD值为2.911.研究结果表明,可见-近红外光谱技术作为一种检测梨总酸含量的方法,结合CARS+LS-SVM预测模型具有良好的性能,完全可以有效实现梨总酸含量的定量检测.
Non-destructive Detection of Total Acid Content in Pear Based on Visible-near Infrared Spectroscopy
Pear as one of the most favored fruit,its total acid content would has a great influnce on pear's taste and quality,so the application of non-destructive assessment of total acid content in pears shows promising prospects.In this study,the near-infrared spectral data of 240 mature pear samples in northern Jiangxi were collected,take 180 random pear samples as the cali-bration set and 60 unknown samples as the prediction set.The study and analysis were conducted using 1401 wavelength points in the range of 400~1800 nm,after eliminating noise at the beginning and end of the spectrum.Original spectral data were pre-processed by SG smoothing method and baseline offset correction method,through the Partial Least Squares Regression math-ematical model to determine the SG smoothing method has the most significant pretreatment of the original spectral;competitive adaptive reweighted sampling(CARS)and successive projections algorithm(SPA)are used to extract spectral characteristic wavelengths,meanwhile,combining Partial Least Squares Regression and Least Square Support Vector Machine analysis meth-ods to establish the prediction model of total acid content,among them,the CARS+LS-SVM prediction model has the best pre-diction effect on the total acid content of pear,the R2p value was 0.901,the RPD value was 2.911.Research shows that visible near-infrared spectroscopy is a method to detect the total acid content of pear,combined with the CARS+LS-SVM prediction model,the quantitative detection of pear total acid content can be realized.

non-destructive examinationvisible-near infrared spectroscopyfeature selectionpeartotal acid

罗澍寰、孙武、游杰、王伟、胡必伟、姜南

展开 >

江西省科技基础条件平台中心,江西 南昌 330003

无损检测 可见-近红外光谱 特征选择 总酸

江西省重点研发计划一般项目

20192BBEL50037

2024

计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
年,卷(期):2024.(5)