首页|基于改进YOLOv5的复杂路况密集行人检测方法

基于改进YOLOv5的复杂路况密集行人检测方法

扫码查看
针对复杂街景环境下行人检测精度低的问题,基于YOLOv5网络,提出一种改进的行人检测网络YOLO-BEN.该网络将残差分级,利用连接模块Res2Net与C3模块进行融合,加强细粒度级别的多尺度特征表示.采用双层路由注意力模块,构建和修剪区域级有向图,在路由区域的联合中应用细粒度的注意力,使网络具备动态的查询感知稀疏性,提高对模糊图像的特征提取能力.改进原网络Neck部分进一步保留局部角区域信息,弥补被遮挡行人的信息丢失问题.使用NWD度量与原有的IoU度量形成联合损失函数,同时增加小目标检测头,提高远距离行人检测效果.实验中该方法在自制数据集和部分WiderPerson数据集上取得了较好的效果,改进后比原始网络的精确率、召回率、平均精度分别提高了2.8、4.3、3.9个百分点.
An Improved YOLOv5-based Method for Dense Pedestrian Detection Under Complex Road Conditions
Aiming at the problem of low pedestrian detection accuracy in complex street scene environment,a new network YOLO-BEN is proposed based on the improvement of YOLOv5 network.The network uses a residual connection module Res2Net with hierarchical system to integrate with C3 module,enhancing fine-grained multi-scale feature representation.The paper adopts the Bi-level routing attention module to construct and prune a region level directed graph,and applies fine-grained atten-tion in the union of routing regions,enabling the network to have dynamic query aware sparsity and improving the feature extrac-tion ability of fuzzy images.We incorporate the EVC module to preserve local corner area information and compensate for the problem of information loss caused by occluded pedestrians.In this paper,NWD metric and original IoU metric are used to form a joint loss function,and a small target detection head is added to improve the effect of long-distance pedestrian detection.In the experiment,the method has achieved good results on self-made data sets and some WiderPerson data sets.Compared with the original network,the accuracy,recall and average accuracy of the improved network are increased by 2.8,4.3 and 3.9 percent-age points respectively.

pedestrian detectionmulti scale featuresdouble layer routing attention mechanismangular areal featuresmall target detection

孙睿琦、窦修超、李志华、蒋雪梅、孙宇豪

展开 >

河海大学能源与电气学院,江苏 南京 211100

痕迹科学与技术公安部重点实验室,北京 100038

行人检测 多尺度特征 双层路由注意力机制 角区域特征 小目标检测

公安部科技强警基础工作计划

2022JC13

2024

计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
年,卷(期):2024.(5)