首页|胎盘超声图像分割

胎盘超声图像分割

扫码查看
妊娠早期的胎盘形状和大小与胎儿生长等临床结果紧密相关.针对人工手动标注胎盘轮廓较为耗时的分割方法,设计一种新型深度学习分割网络:DEC-U-Net,该模型设计依据U-Net架构,在U-Net下采样阶段使用深度超参数化卷积代替2D卷积并且联合ECA(Efficient Channel Attention)注意力机制,在不过多引入参数量的同时提高对胎盘细节特征识别的准确度.将交叉注意力机制引入跳跃链接,解决胎盘边界模糊、对比度不均等问题.与普通U-Net网络相比,本文算法分别在交并比(IoU)、召回率(Recall)、精确度(Precision)、Dice系数上提升4.14、9.59、6.2、16.41个百分点.实验结果表明,改进后的网络模型具有较好的分割效果,能够将超声图像中的胎盘进行精确分割.
Placenta Ultrasound Image Segmentation
The shape and size of the placenta in early pregnancy are closely related to clinical outcomes such as fetal growth.Aiming at the time-consuming interactive segmentation method for three-dimensional ultrasound(3DUS)detection of placental size,a new deep learning segmentation network,DEC-U-Net,is designed based on the U-Net architecture.In the U-Net downsampling stage,deep hyperparametric convolution is used instead of 2D convolution and combined with the ECA attention mechanism.However,the accuracy of placenta detailed feature recognition is improved while introducing more parameter quanti-ties.The cross attention mechanism is introduced into jump linking to solve the problems of blurred placental boundaries and un-even contrast.Compared with ordinary U-Net networks,the algorithm in this paper improves the intersection and merge ratio(IoU),recall rate(Recall),accuracy(Precision),and Dice coefficient by 4.14,9.59,6.2,and 16.41 percentage points,re-spectively.The experimental results show that the improved network model has a good segmentation effect and can accurately seg-ment the placenta in ultrasound images.

fetal ultrasound imagesplacental testingDo-ConvECA attentionMHCA

徐成、张芸、曾祥进

展开 >

武汉工程大学计算机科学与工程学院,湖北 武汉 430205

武汉市硚口区妇幼保健院,湖北 武汉 430205

胎儿超声图像 胎盘检测 Do-Conv ECA注意力 MHCA

武汉市卫生健康委科研项目国家自然科学基金湖北省三峡实验室创新基金

WX21Q6661502355SC215001

2024

计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
年,卷(期):2024.(5)