计算机与现代化2024,Issue(6) :8-13,24.DOI:10.3969/j.issn.1006-2475.2024.06.002

基于语义特征融合的作文自动评分方法

Automatic Scoring Method for Composition Based on Semantic Feature Fusion

袁航 杨勇 任鸽 帕力旦·吐尔逊
计算机与现代化2024,Issue(6) :8-13,24.DOI:10.3969/j.issn.1006-2475.2024.06.002

基于语义特征融合的作文自动评分方法

Automatic Scoring Method for Composition Based on Semantic Feature Fusion

袁航 1杨勇 1任鸽 1帕力旦·吐尔逊1
扫码查看

作者信息

  • 1. 新疆师范大学计算机科学技术学院,新疆 乌鲁木齐 830054
  • 折叠

摘要

作文自动评分技术是一种利用机器学习进行自然语言处理的技术.目前,基于深度学习的端到端模型在作文自动评分领域已经广泛使用.然而,由于端到端模型难以获取不同特征之间的相关性,因此提出一种基于语义特征融合的作文自动评分方法(TSEF).该方法主要分为特征提取和特征融合2个阶段.特征提取阶段,使用Bert模型对输入文本进行预训练,并使用多头注意力机制对输入文本进行自训练,以补充预训练的不足;特征融合阶段,使用交叉融合方法将获取的不同特征融合,以此获得更好性能的模型.在实验中,将TSEF与许多强基线进行比较,结果表明了本文方法的有效性和稳健性.

Abstract

Automatic composition scoring technology is a kind of natural language processing technology using machine learning.At present,end-to-end models based on deep learning have been widely used in the field of automatic essay scoring.However,because of the difficulty in obtaining correlations between different features in end-to-end models,Automatic Scoring Method for Composition Based on Semantic Feature Fusion(TSEF)has been proposed.This method is mainly divided into two stages:fea-ture extraction and feature fusion.In the feature extraction stage,the Bert model is used to pre-train the input text,and a multi-head-attention mechanism is used to self-train the input text to supplement the shortcomings of pre-training;In the feature fu-sion stage,cross fusion methods are used to fuse the different features obtained in order to obtain a better performance model.In the experiment,TSEF was compared with many strong baselines,and the results demonstrated the effectiveness and robustness of our method.

关键词

作文自动评分/自训练/预训练/交叉融合

Key words

automatic grading of essays/self-training/pre-training/cross fusion

引用本文复制引用

基金项目

新疆维吾尔自治区自然科学基金项目(2021D01B72)

国家自然科学基金资助项目(62167008)

国家自然科学基金资助项目(62066044)

出版年

2024
计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
段落导航相关论文