首页|面向智慧养老的边缘计算卸载方法

面向智慧养老的边缘计算卸载方法

扫码查看
针对边缘计算环境下任务卸载过程中,老年人健康数据任务的动态到达性和信道条件的不确定性,引发的平均时延和能耗的优化问题,本文提出一种基于李雅普诺夫优化与深度强化学习结合的在线任务计算卸载优化算法.一个多用户移动边缘计算网络中的用户任务数据随机到达,应用李雅普诺夫优化方法对任务卸载过程中的队列长度进行约束和建模,深度强化学习方法利用模型信息将输入环境参数转化为学习最优的二进制卸载动作的过程,之后对卸载动作进行准确评价,通过仿真实验证明了该组合算法优于其他深度强化学习算法,并且在优化任务卸载所用能耗的同时合理约束队列长度,有效降低了数据队列长度的积压.
Edge Computing Unloading Method for Intelligent Elderly Care
In order to solve the optimization problem of average delay and energy consumption caused by the uncertainty of the dynamic arrival and channel conditions of the elderly health data tasks during task unloading in the edge computing environment,an online task computing offloading optimization algorithm based on Lyapunov optimization and deep reinforcement learning was proposed.In a multi-user mobile edge computing network,the user task data arrived randomly.Lyapunov optimization method was applied to constrain and model the queue length in the process of task offloading.Then,the model information was utilized by deep reinforcement learning method to convert the input environment parameters into the process of learning the optimal bi-nary offloading action,and the offloading action was accurately evaluated.The simulation results show that the proposed algo-rithm is superior to some deep reinforcement learning algorithms,and the energy consumption of task offloading is reduced effec-tively while the queue length is constrained reasonably.

smart senior careLyapunov optimizationdeep reinforcement learingedge computing offloadingmobile edge computing

李爽、叶宁、徐康、王甦、王汝传

展开 >

南京邮电大学计算机学院(软件学院、网络空间安全学院),江苏 南京 210023

江苏省无线传感网高技术研究重点实验室,江苏 南京 210023

智慧养老 李雅普诺夫优化 深度强化学习 边缘计算卸载 移动边缘计算

国家自然科学基金资助项目江苏省科技厅重点研发计划

62272244BE2020713

2024

计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
年,卷(期):2024.(6)