首页|单条件三元概念构建及其融合推荐应用

单条件三元概念构建及其融合推荐应用

扫码查看
三元概念分析已被引入推荐系统领域,但是概念融合环节增加了三元概念的构建复杂度,另外概念信息在推荐时未得到充分利用.本文直接利用单条件三元概念进行推荐,为此设计一种针对单条件三元概念的构建方法和融合推荐算法.首先分解三元背景为多个单条件三元背景,设计概念比例作为启发式信息生成单条件三元概念;接着计算待推荐项目在单条件三元概念上的项目流行度,并结合三元背景的项目条件权重设计融合推荐置信度;最后结合项目的融合推荐置信度和推荐阈值,为目标用户进行推荐预测.本文在6个公开数据集中进行了实验,结果表明在稀疏度较低的数据集上,本文提出的算法相比GRHC和GreConD-kNN的推荐效果略好,与IBCF和kNN的效果相当.
Construction of Single-condition Triadic Concept and Its Fusion Recommendation Application
Triadic concept analysis has been introduced into the field of recommendation systems.However,the fusion step of concepts increases the complexity of constructing triadic concepts,and the concept information is not fully utilized in recommen-dation.This paper directly uses single-condition triadic concepts for recommendation,and designs a construction method and fu-sion recommendation algorithm for single-condition triadic concepts.Firstly,the triadic context is decomposed into multiple single-condition triadic contexts,and the concept proportion is designed as heuristic information to generate single-condition tri-adic concept.Then,the popularity of the recommended items on the single-condition triadic concepts is calculated,and the fu-sion recommendation confidence is designed by combining the item condition weight of the triadic context.Finally,the target user is recommended by combining the fusion recommendation confidence and the recommendation threshold.This paper con-ducts experiments on six public datasets.The results show that on datasets with low sparsity,the algorithm proposed in this paper is slightly better than the recommendation effects of GRHC and GreConD-kNN,and comparable to the effects of IBCF and kNN.

single-condition triadic conceptheuristic methoditem condition weightitem popularityfusion recommendation confidence

刘彧轩、廖宇晨、刘忠慧

展开 >

西南石油大学计算机与软件学院,四川 成都 610500

西南石油大学石油与天然气工程学院,四川 成都 610500

单条件三元概念 启发式方法 项目条件权重 项目流行度 融合推荐置信度

国家自然科学基金资助项目国家自然科学基金资助项目中央引导地方科技发展专项项目

62006200619762452021ZYD0003

2024

计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
年,卷(期):2024.(7)
  • 13