计算机与现代化2024,Issue(8) :54-58.DOI:10.3969/j.issn.1006-2475.2024.08.010

基于改进YOLOv5s和DeepSORT的行人跟踪算法

Pedestrian Tracking Algorithm Based on Improved YOLOv5s and DeepSORT

郑尚坡 陈德富 李坚利 林国贤 王星平
计算机与现代化2024,Issue(8) :54-58.DOI:10.3969/j.issn.1006-2475.2024.08.010

基于改进YOLOv5s和DeepSORT的行人跟踪算法

Pedestrian Tracking Algorithm Based on Improved YOLOv5s and DeepSORT

郑尚坡 1陈德富 1李坚利 2林国贤 2王星平3
扫码查看

作者信息

  • 1. 浙江工业大学信息工程学院,浙江 杭州 310023
  • 2. 浙江万向精工有限公司,浙江 杭州 311202
  • 3. 浙江万向钱潮股份公司,浙江 杭州 311215
  • 折叠

摘要

为提高DeepSORT目标检测器YOLOv5s算法的检测精度,本文将注意力机制CBAM融入到YOLOv5s网络结构中,改进双向特征融合网络BiFPN,使用EIoU作为边界框损失函数.基于VOC 2007行人数据集的测试结果表明本文算法的精确率、召回率和平均精度相比于原算法分别提高0.3、1.0和0.3个百分点;在MOT17数据集上的测试结果表明本文算法的MOTA、IDF1、MT、IDR分别提升1.8个百分点、2.9个百分点和1、2.7,FN与ML分别降低了4373和11.测试结果验证了改进YOLOv5s作为检测器能够有效提升算法的跟踪精度.

Abstract

The study conducts focus on enhancing the detection accuracy of the YOLOv5s algorithm within the DeepSORT frame-work.The research work encompasses the integration of the attention mechanism called Convolutional Block Attention Module(CBAM)into the network structure of YOLOv5s,the refinement of the bidirectional feature fusion network Bi-directional Fea-ture Pyramid Network(BiFPN),and the adoption of Enhanced Intersection over Union(EIoU)as the bounding box loss func-tion.Test results obtained from the VOC 2007 pedestrian dataset indicates improvements when compared to the original algo-rithm.Specifically,the proposed algorithm exhibits an increase of 0.3 percentage points in precision,1.0 percentage points in re-call,and 0.3 percentage points in average precision.Subsequently,the algorithm is evaluated on the MOT17 dataset,showcas-ing significant enhancements in multiple metrics.The MOTA metric experiences a 1.8 percentage points improvement,while IDF1,MT,and IDR see enhancements of 2.9 percentage points,1,and 2.7,respectively.Moreover,the number of false nega-tives(FN)decreases by 4373,and the number of mostly lost targets(ML)decreases by 11.Overall,these empirical findings substantiate the efficacy of the improved YOLOv5s algorithm as a detector,effectively augmenting tracking precision in various scenarios.

关键词

目标跟踪/YOLOv5s/DeepSORT/注意力机制/特征融合网络

Key words

target tracking/YOLOv5s/DeepSORT/attention mechanism/feature fusion network

引用本文复制引用

基金项目

杭州市萧山区重大科技计划项目(2021108)

出版年

2024
计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
参考文献量9
段落导航相关论文