计算机与现代化2024,Issue(10) :93-99.DOI:10.3969/j.issn.1006-2475.2024.10.015

一种面向工业部署的目标检测模型蒸馏技术

Object Detection Models Distillation Technique for Industrial Deployment

史星宇 李强 庄莉 梁懿 王秋琳 陈锴 伍臣周 常胜
计算机与现代化2024,Issue(10) :93-99.DOI:10.3969/j.issn.1006-2475.2024.10.015

一种面向工业部署的目标检测模型蒸馏技术

Object Detection Models Distillation Technique for Industrial Deployment

史星宇 1李强 2庄莉 3梁懿 3王秋琳 3陈锴 3伍臣周 3常胜1
扫码查看

作者信息

  • 1. 武汉大学物理科学与技术学院,湖北 武汉 430072
  • 2. 国网信息通信产业集团有限公司,北京 102211
  • 3. 福建亿榕信息技术有限公司,福建 福州 350003
  • 折叠

摘要

深度学习目标检测模型的应用场景相当广泛,然而,受制于部署设备的性能,部署模型的检测精度往往较低.为提高检测模型的性能,本文提出一种高效的动态蒸馏训练方法.该方法创新性地引入动态样本分配策略来筛选教师模型的高质量输出,并配合蒸馏损失的动态权重调整,对传统的目标检测模型蒸馏算法进行改进.在电网安全施工场景数据集上的实验结果表明,相较于直接训练,该方法使YOLOv6-n模型的AP(Average Precision)值平均提高了2.63个百分点.本文提出的蒸馏方法不影响原有部署模型的推理速度,有助于提升目标检测模型在各种工业场景上的检测性能.

Abstract

The application scenarios of deep learning object detection models are quite extensive.However,the detection accu-racy of deployed models is often low due to the performance limitations of deployment devices.To enhance the performance of de-tection models,this paper proposes an efficient dynamic distillation training method.This method innovatively introduces a dy-namic sample assignment strategy to select high-quality outputs of the teacher model,and pairs this with dynamic weight adjust-ment of distillation loss,thereby improving the traditional distillation algorithm used in object detection models.Experimental re-sults on a dataset for electrical grid safety construction indicate that,compared to direct training,this method increased the Aver-age Precision(AP)value of the YOLOv6-n model by an average of 2.63 percentage points.The distillation method proposed in this paper does not affect the inference speed of the original deployment model and helps to enhance the detection performance of object detection models in various industrial scenarios.

关键词

深度学习/目标检测/知识蒸馏

Key words

deep learning/object detection/knowledge distillation

引用本文复制引用

基金项目

电网人工智能模型优化研究项目(SGITYLYRWZXX2202264)

国家自然科学基金资助项目(62074116)

武汉市知识创新专项(2023010201010077)

出版年

2024
计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
段落导航相关论文