计算机与现代化2024,Issue(12) :53-58,71.DOI:10.3969/j.issn.1006-2475.2024.12.008

基于经验小波变换的油气井产量预测模型

Oil and Gas Well Production Prediction Model Based on Empirical Wavelet Transform

张晓东 白广芝 李敏 李昊洋
计算机与现代化2024,Issue(12) :53-58,71.DOI:10.3969/j.issn.1006-2475.2024.12.008

基于经验小波变换的油气井产量预测模型

Oil and Gas Well Production Prediction Model Based on Empirical Wavelet Transform

张晓东 1白广芝 1李敏 1李昊洋2
扫码查看

作者信息

  • 1. 中国石油大学(华东)计算机科学与技术学院,山东 青岛 266580
  • 2. 大庆油田采油工程研究院采气研究室,黑龙江 大庆 163000
  • 折叠

摘要

油气井产量预测对油气资源高效开发具有重要意义.针对间开生产等人工作业因素导致产量数据非线性强、预测难的问题,本文提出一种融合经验小波变换(EWT)和卷积双向长短期记忆网络的双通道产量预测模型.模型一部分采用EWT分解产气量数据,对分解后的子序列采用双向长短期记忆网络(BiLSTM)进行时域和频域特征提取;模型另一部分对多维历史生产数据采用一维卷积神经网络(1D-CNN)进行局部时序特征提取,然后使用BiLSTM并结合自注意力机制从1D-CNN模块的输出特征中挖掘气井生产数据的全局特征.最后,将模型的2个部分进行特征融合,生成最终预测结果.利用某气井生产后期历史数据开展实验建模分析,发现针对人工措施频繁的复杂产量序列本文方法预测结果更准确,表明了本文方法应用于油气田实际生产预测的可行性.

Abstract

Oil and gas well production prediction is of great significance for efficient development of oil and gas resources.A two-channel production prediction model incorporating empirical wavelet transform(EWT)and convolutional bi-directional long and short-term memory network is proposed to address the problem of strong nonlinearity and difficulty in prediction of production data due to inter-opening production and other artificial operational factors.One part of the model uses EWT to decompose gas production data,and the decomposed subseries are extracted in the time and frequency domains using a bi-directional long and short-term memory network(BiLSTM);the other part of the model uses a one-dimensional convolutional neural network(1D-CNN)to extract local time-series features from the multidimensional historical production data,and then uses BiLSTM com-bined with a self-attentive mechanism to extract the output features from the 1D-CNN module output features to mine the global features of gas well production data.Finally,the features of the two parts of the model are fused to generate the final prediction re-sults.Experimental modeling analysis is carried out using the late production history data of a gas well,and it is found that the prediction results of this method are more accurate for complex production sequences with frequent manual measures,which veri-fies the feasibility of applying this method to actual production prediction in oil fields.

关键词

产量预测/经验小波变换/卷积神经网络/双向长短期记忆网络/自注意力机制

Key words

yield prediction/empirical wavelet transform/convolutional neural network/bidirectional long short-term memory network/self-attention mechanism

引用本文复制引用

出版年

2024
计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
段落导航相关论文