计算机与现代化2024,Issue(12) :66-71.DOI:10.3969/j.issn.1006-2475.2024.12.010

复杂施工场景下的安全帽佩戴检测算法

Safety Helmet Wearing Detection Algorithm for Complex Construction Scenes

刘云海 冯广 吴晓婷 杨群
计算机与现代化2024,Issue(12) :66-71.DOI:10.3969/j.issn.1006-2475.2024.12.010

复杂施工场景下的安全帽佩戴检测算法

Safety Helmet Wearing Detection Algorithm for Complex Construction Scenes

刘云海 1冯广 1吴晓婷 2杨群2
扫码查看

作者信息

  • 1. 广东工业大学计算机学院,广东 广州 510006
  • 2. 广东工业大学自动化学院,广东 广州 510006
  • 折叠

摘要

针对在施工现场中存在复杂的背景干扰及异物遮挡,从而降低安全帽检测准确度的问题,提出一种复杂施工场景下的安全帽佩戴检测算法.本文改进YOLOv5算法,添加坐标注意力机制(Coordinate Attention,CA),使用Stem Block替换主干网络中的前2层,应用一个添加了坐标注意力机制的解耦检测头(Decoupled detect Head,DH)结构,同时添加额外的大尺度特征提取层.在安全帽数据集上的实验结果表明,改进后的CADH-YOLOv5算法平均检测准确度达到91.2%,能够显著改善复杂施工环境下的安全帽佩戴检测性能,优于同类算法,同时具有一定的实时性.

Abstract

In view of complex background interference and foreign object occlusion in the construction scenes,which reduces the accuracy of helmet wearing detection,we propose a safety helmet wearing detection algorithm for complex construction scenes.This paper improves the YOLOv5 algorithm,adding the Coordinate Attention(CA)mechanism,replacing the first two layers in the backbone network using the Stem Block,applying a Decoupled detection Head(DH)structure with the addition of the Coordinate Attention mechanism.At the same time,an additional large-scale feature extraction layer is added.Results on the helmet dataset show that the improved CADH-YOLOv5 algorithm with a mean detection precision of 91.2%can significantly im-prove the performance of safety helmet wearing detection for complex construction scenes,which is superior to similar algo-rithms,and has limited real-time performance.

关键词

特征提取/安全帽佩戴检测/坐标注意力机制/解耦检测头/目标检测

Key words

feature extraction/safety helmet wearing detection/coordinate attention/decoupled detection heads/object detect

引用本文复制引用

出版年

2024
计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
段落导航相关论文