首页|基于注意力的DSMSC的遥感图像场景分类

基于注意力的DSMSC的遥感图像场景分类

扫码查看
针对遥感影像背景复杂且场景目标尺度信息不同导致模型分类准确度较低的问题,提出一种基于注意力的深度可分离多尺度扩张特征融合网络的遥感图像场景分类模型(Depthwise Separable Multi-scale Dilated Convolution,DSMSC).首先,该模型基于深度可分离卷积构建特征提取模块,在提取影像深层特征的同时减少参数量;然后,通过多尺度扩张卷积模块增大网络感受野,获取图像的全局特征和关联特征;最后,利用注意力机制使网络关注重要的特征并将其输入到Softmax分类器进行分类.在遥感场景AID和WHU-RS19这2个数据集上进行验证,实验结果表明与AlexNet、VGG-16、ResNet18等模型相比,本文模型的准确率分别提高到93.32%和91.15%,同时具有较低的参数量,对遥感图像场景分类具有一定的应用前景.
DSMSC Based on Attention Mechanism for Remote Sensing Image Scene Classification
To address the issue of limited classification accuracy in remote sensing image scene classification,arising from the complex background and varying scales of scene objects,this paper introduces a remote sensing image scene classification model based on a depthwise separable multiscale dilated feature fusion network with an attention mechanism.Firstly,this model em-ploys a feature extraction module built on depthwise separable convolutions,allowing the extraction of deep-level image features while minimizing the parameter count.Subsequently,a multiscale dilated convolution module is used to expand the network's re-ceptive field,enabling the extraction of both global and contextual features from remote sensing images.Finally,the attention mechanism is used to make the network focus on important features,and the extracted features are input into a Softmax classifier for the purpose of classification.We validate the proposed model on two datasets,AID and WHU-RS19,for remote sensing scene classification.Experimental results demonstrate that,in comparison to baseline models such as AlexNet,VGG-16,and ResNet18,the proposed model achieves an accuracy improvement to 93.32%on AID and 91.15%on WHU-RS19,while main-taining a relatively lower parameter count.The proposed model holds significant theoretical implications for remote sensing image scene classification.

remote sensing image scene classificationconvolutional neural networksdepthwise separable convolutionmulti-scaleexpansion convolution

刘宝宝、杨菁菁、陶露、王贺应

展开 >

西安工程大学计算机科学学院,陕西 西安 710048

遥感图像场景分类 卷积神经网络 深度可分离卷积 多尺度 扩张卷积

2024

计算机与现代化
江西省计算机学会 江西省计算技术研究所

计算机与现代化

CSTPCD
影响因子:0.472
ISSN:1006-2475
年,卷(期):2024.(12)