首页|模糊核聚类支持向量机集成模型及应用

模糊核聚类支持向量机集成模型及应用

扫码查看
为了进一步提高支持向量机在回归预测中的精度,提出一种基于模糊核聚类的最小二乘支持向量机集成方法.该方法采用模糊核聚类算法根据相互独立训练出的多个LS-SVM在验证集上的输出对其进行分类,并计算每一类中的所有个体在独立验证集上的泛化误差,然后取其中平均泛化误差最小的个体作为这一类的代表,最后经简单平均法得到集成的最终预测输出.在短期电力负荷预测中的实验结果表明,该方法具有更高的精确度.
Support vector machine ensemble model based on KFCM and its application
To further enhance the regression prediction accuracy of support vector machine,a Least Squares Support Vector Machine (LS-SVM) ensemble model based on Kernel Fuzzy C-Means clustering (KFCM) was proposed. The KFCM algorithm was used to classify LS-SVMs trained independently by its output on validate samples,the generalization errors of LS-SVMs in each category to the validate set were calculated of the LS-SVM whose error was minimum would be selected as the representative of its category,and then the final prediction was obtained by simple average of the predictions of the component LS-SVM. The experiments in short-term load forecasting show the proposed approach has higher accuracy.

Least Squares Support Vector Machine (LS-SVM)Kernel Fuzzy C-Means clustering (KFCM)ensemble learningshort-term load forecasting

张娜、张永平

展开 >

中国矿业大学,计算机学院,江苏,徐州,221116

宿迁高等师范学校,计算机系,江苏,宿迁,223800

最小二乘支持向量机 模糊核聚类 集成学习 短期负荷预测

2010

计算机应用
中国科学院成都计算机应用研究所

计算机应用

CSTPCDCSCD北大核心
影响因子:0.892
ISSN:1001-9081
年,卷(期):2010.30(1)
  • 8
  • 4