首页|联邦学习的公平性综述

联邦学习的公平性综述

扫码查看
联邦学习(FL)凭借分布式结构和隐私安全的优势快速发展,但大规模FL引发的公平性问题影响了FL系统的可持续性.针对FL的公平性问题,对近年FL公平性的研究工作进行了系统梳理和深度分析.首先,对FL的工作流程和定义进行了解释,总结了FL中的偏见和公平性概念;其次,详细归纳了FL公平性研究中常用的数据集,探讨了公平性研究所面临的挑战;最后,从数据源选择、模型优化、贡献评估和激励机制这4个方面归纳梳理了相关研究工作的优缺点、适用场景以及实验设置等,并展望了FL公平性未来的研究方向和趋势.
Survey of fairness in federated learning
Federated Learning(FL)has experienced rapid development due to its advantages in distributed structure and privacy security.However,the fairness issues caused by large-scale FL affect the sustainability of FL systems.In response to the fairness issues in FL,recent researches on fairness in FL was reviewed systematically and analyzed deeply.Firstly,the workflow and definitions of FL were explained,and biases and fairness concepts in FL were summarized.Secondly,commonly used datasets in fairness research of FL were detailed,and the challenges faced by fairness research were discussed.Finally,the advantages,disadvantages,applicable scenarios,and experimental setting of relevant research work were summed up from four aspects:data source selection,model optimization,contribution evaluation,and incentive mechanism,and the future research directions and trends in fairness of FL were prospected.

Federated Learning(FL)fairnessdata selectionmodel optimizationcontribution evaluationincentive mechanism

张淑芬、张宏扬、任志强、陈学斌

展开 >

华北理工大学 理学院,河北 唐山 063210

河北省数据科学与应用重点实验室(华北理工大学),河北 唐山 063210

唐山市大数据安全与智能计算重点实验室(华北理工大学),河北 唐山 063210

唐山市数据科学重点实验室(华北理工大学),河北 唐山 063210

展开 >

联邦学习 公平性 数据选择 模型优化 贡献评估 激励机制

2025

计算机应用
中国科学院成都计算机应用研究所

计算机应用

北大核心
影响因子:0.892
ISSN:1001-9081
年,卷(期):2025.45(1)