首页|基于量子动力学的优化算法熵

基于量子动力学的优化算法熵

扫码查看
在优化系统分析和研究中,熵是一种常用的描述手段,针对不同优化系统动态行为和熵之间的内在联系缺乏深入分析的问题,提出一种基于量子动力学的优化算法熵.首先基于物理学中的布朗运动与采样行为的相似性提出优化问题的布朗运动描述方法.将优化问题力学表达转化为能量的形式引入薛定谔方程,提出基于量子动力学的优化算法;然后结合优化问题在薛定谔方程下的概率表达得到优化算法熵;最后对目标函数约束下的粒子随机行为进行分析,给出了量子动力学下优化系统的基本搜索行为与熵的关系.实验从参考能量、自由粒子动能和目标函数扰动3个不同方面跟踪和分析优化系统的动态行为和熵的变化趋势,验证了熵与优化系统搜索行为之间的相关性.实验结果表明,基于量子动力学的优化算法熵可以深入分析优化过程,为研究优化算法给出了新的思路和方法.
Optimization algorithm entropy based on quantum dynamics
Entropy is a common description method in the analysis and research of optimization system.To address the lack of in-depth analysis of the inherent relationship between the dynamic behavior and entropy of different optimization systems,an optimization algorithm entropy based on quantum dynamics was proposed.Firstly,based on the similarity between Brownian motion and sampling behavior in physics,a Brownian motion description method for optimization problems was proposed.The mechanical expression of optimization problems was transformed into the form of energy and introduced into the Schrödinger equation,and an optimization algorithm based on quantum dynamics was proposed.Then,the probability expression of optimization problems under the Schrödinger equation was combined to obtain optimization algorithm entropy.Finally,the random behavior of particles under constraint of the objective function was analyzed,and the relationship between basic search behavior of optimization systems under quantum dynamics and entropy was given.By tracking and analyzing the dynamic behavior and entropy change trend of optimization systems from three different aspects:reference energy,free particle kinetic energy,and objective function disturbance,the correlation between entropy and search behavior of optimization systems was verified through experiments.Experiments results show that optimization algorithm entropy based on quantum dynamics can deeply analyze optimization process,providing a new idea and method for studying optimization algorithms.

quantum dynamicsoptimization problemBrownian motionSchrödinger equationentropy

唐泉、王鹏、辛罡

展开 >

中国科学院 成都计算机应用研究所,成都 610213

中国科学院大学,北京 100049

成都锦城学院 电子信息学院,成都 611731

西南民族大学 计算机与人工智能学院,成都 610225

展开 >

量子动力学 优化问题 布朗运动 薛定谔方程

2025

计算机应用
中国科学院成都计算机应用研究所

计算机应用

北大核心
影响因子:0.892
ISSN:1001-9081
年,卷(期):2025.45(1)