首页|基于坐标几何采样的点云配准方法

基于坐标几何采样的点云配准方法

扫码查看
为了提高点云配准的精度、鲁棒性和泛化性,解决迭代最近点(ICP)算法容易陷入局部最优解的问题,提出一种基于坐标几何采样的深度最近点(GSDCP)的点云配准方法.首先,基于每个点的周围点的坐标估计中心点曲率,并通过曲率大小筛选出能保留点云几何特征的点,从而完成点云下采样;然后,使用动态图卷积神经网络(DGCNN)配合下采样点云学习融入局部几何信息的点云特征,并通过Transformer捕获两个特征嵌入之间的上下文信息、使用软指针近似组合匹配;最后,利用一个可微的奇异值分解(SVD)层估计最终的刚性变换.在数据集ModelNet40上进行的点云配准实验结果表明,与ICP、Go-ICP(Globally optimal ICP)、PointNetLK、快速全局配准(FGR)、ADGCNNLK(Attention Dynamic Graph Convolutional Neural Network Lucas-Kanade)、深度最近点(DCP)和多特征引导网络(MFGNet)相比,在无噪声、有噪声和看不见点云类别的情况下GSDCP的配准精度和鲁棒性都最好;其中在无噪声的情况下,与MFGNet相比,GSDCP的旋转均方误差(MSE)降低了31.3%,平移MSE降低了58.3%;在有噪声的情况下,GSDCP的旋转MSE降低了33.9%,平移MSE降低了73.4%;在看不见点云类别的情况下,GSDCP的旋转MSE降低了57.7%,平移MSE降低了77.9%.除此之外,对不完整点云数据(包括随机遮挡和点云残缺),在点云完整度为75%以下时,GSDCP的旋转MSE降低了35.1%,平移MSE降低了39.8%.
Point cloud registration method based on coordinate geometric sampling
To improve accuracy,robustness,and generalization of point cloud registration and address the problem of the Iterative Closest Point(ICP)algorithm easily falling into local optimal solution,a point cloud registration method of coordinate Geometric Sampling based on Deep Closest Point(GSDCP)was proposed.Firstly,the central point curvature was estimated using coordinates of surrounding points of each point,and points that preserved geometric features of the point cloud were selected through curvature sizes,so as to realize downsampling of the point cloud.Secondly,a Dynamic Graph Convolutional Neural Network(DGCNN)was employed to coordinate with the downsampled point cloud to learn point cloud features that incorporated local geometry information,and contextual information was captured using a Transformer,and soft Pointers facilitate approximate combination and matching between two feature embedders.Finally,a differentiable Single Value Decomposition(SVD)layer was utilized to estimate the final rigid transformation.Point cloud registration experimental results on ModelNet40 dataset show that compared with ICP,Globally optimal ICP(Go-ICP),PointNetLK,Fast Global Registration(FGR),ADGCNNLK(Attention Dynamic Graph Convolutional Neural Network Lucas-Kanade),Deep Closest Point(DCP),and Multi-Features Guidance Network(MFGNet),GSDCP achieves all the best registration accuracy and robustness in scenarios with or without noise,as well as when the point cloud category is invisible.In noise-free scenario,GSDCP reduces rotational Mean Square Error(MSE)by 31.3%and translational MSE by 58.3%compared to MFGNet.In noisy scenario,GSDCP reduces rotational MSE by 33.9%and translational MSE by 73.4%compared to MFGNet.When the point cloud category is invisible,GSDCP reduces rotational MSE by 57.7%and translational MSE by 77.9%compared to MFGNet.Additionally,when dealing with incomplete point cloud data(including random occlusion and fragmentary point cloud),GSDCP exhibits reductions of 35.1%in rotational MSE and 39.8%in translational MSE compared to MFGNet when point cloud integrity is below 75%.

point cloud registrationdeep learninggeometric samplingfeature extractionTransformer

梁杰涛、罗兵、付兰慧、常青玲、李楠楠、易宁波、冯其、何鑫、邓辅秦

展开 >

五邑大学 电子与信息工程学院,广东 江门 529020

澳门科技大学 创新工程学院,澳门 999078

五邑大学 纺织科学与工程学院,广东 江门 529020

五邑大学 应用物理与材料学院,广东 江门 529020

展开 >

点云配准 深度学习 几何采样 特征提取 Transformer

2025

计算机应用
中国科学院成都计算机应用研究所

计算机应用

北大核心
影响因子:0.892
ISSN:1001-9081
年,卷(期):2025.45(1)