首页|基于多维空间卷积信息增强的低质车牌信息超分辨率重建

基于多维空间卷积信息增强的低质车牌信息超分辨率重建

扫码查看
现有交通监控终端采集到的车辆影像通常存在远景低分辨率现象,并伴随有强噪、模糊、过曝、欠曝等一些不确定性像素影响因素,导致车牌信息智能识别的精度难以保证.针对上述问题,提出基于多维空间卷积信息增强的低质车牌信息超分辨率重建(LL-SR)网络.首先,利用卷积挖掘空间与通道特征点的相关性,聚合浅层特征;其次,从不同感受野和不同维度挖掘特征图之间的关联关系,从而恢复车牌信息的高频细节;最后,对得到的不同尺度特征进行跨通道像素级融合和矫正,以减少无用特征在上下文的传播,实现低质车牌信息的超分辨率重建.在太原车牌(LT)和美国车牌(LU)数据集上的实验结果表明,所提网络的峰值信噪比(PSNR)和结构相似性(SSIM)分别为26.682 4 dB和0.820 3及22.356 7 dB和0.781 3,相较于NGramSwin(N-Gram in Swin transformers)和CARN(CAscading Residual Network)分别提升了 0.210 9 dB和 1.736 1 dB、0.005 7 和 0.033 0 及 0.472 8 dB和 1.419 2 dB、0.019 6 和0.039 9;且重建后的车牌信息具有更好的视觉效果.
Super-resolution reconstruction for low-quality license plate information based on multi-dimensional spatial convolutional information enhancement
Vehicle images collected by the existing traffic monitoring terminals often have low resolution in distant view,accompanied by uncertain pixel influencing factors such as strong noise,blur,overexposure,and underexposure,making it difficult to ensure accuracy of intelligent recognition of license plate information.In response to the above issue,Super-Resolution reconstruction for Low-quality License plate information based on multi-dimensional spatial convolutional information enhancement(LL-SR)network was proposed.Firstly,the correlation of feature points in space and channels mined by convolution were used to aggregate shallow feature.Secondly,correlation between feature maps was mined from different receptive fields and different dimensions,so as to recover high-frequency details of license plate information.Finally,the obtained features of different scales were fused and corrected at pixel level across channels to reduce propagation of useless features in context,thus achieving super-resolution reconstruction of low-quality license plate information.Experimental results on License plate of Taiyuan(LT)and License plates of the United States of America(LU)datasets show that the Peak Signal-to-Noise Ratio(PSNR)and Structural SIMilarity(SSIM)of the proposed network are 26.682 4 dB,0.820 3 and 22.356 7 dB,0.781 3 respectively,which are improved by 0.210 9 dB,1.736 1 dB;0.005 7,0.033 0;and 0.472 8 dB,1.419 2 dB;0.019 6,0.039 9 respectively compared to those of NGramSwin(N-Gram in Swin transformers)and CARN(CAscading Residual Network).Moreover,the license plate information reconstructed by the proposed network has better visual effects.

low-quality license plate informationhigh-quality reconstructionconvolution computationtraffic monitoring

张睿、惠永科、张延军、潘理虎

展开 >

太原科技大学 计算机科学与技术学院,太原 030024

太原科技大学 机械工程学院,太原 030024

低质车牌信息 高质量重建 卷积计算 交通监控

2025

计算机应用
中国科学院成都计算机应用研究所

计算机应用

北大核心
影响因子:0.892
ISSN:1001-9081
年,卷(期):2025.45(1)