首页|基于自适应加权最小二乘支持向量机的芳烃产量软测量建模

基于自适应加权最小二乘支持向量机的芳烃产量软测量建模

扫码查看
芳烃收率是催化重整生产过程中的重要质量指标.针对其软测量建模中样本数据可能存在的测量误差对模型性能的影响,提出一种自适应加权最小二乘支持向量机(AWLS-SVM)回归建模方法.该方法基于最小二乘支持向量机模型,根据样本拟合误差,并结合改进的指数分布加权规则,为每个建模样本分配不同的权值,以降低测量误差对建模精度的影响;同时提出一种全局优化算法-混沌粒子群模拟退火(CPSO-SA)算法对最小二乘支持向量机的模型参数进行优化选择,以提高模型的泛化能力.仿真实验表明,AWLS-SVM模型的预测精度及鲁棒性能优于LS-SVM和WLS-SVM.最后,应用AWLS-SVM方法建立催化重整生产过程芳烃收率的软测量模型,获得了较好的效果.
A soft sensor modeling for aromatics yield based on adaptive weighted least squares support vector machine
The aromatics yield in catalytic reformate is an important quality indicator of the catalytic reforming process.Because of the difficulty in real-time measurement of the aromatics yield,building the soft sensor model for aromatics yield is particularly important.A novel adaptive weighted least squares support vector machine (AWLS-SVM) regression method is presented for the soft sensor modeling of aromatics yield.Firstly,in AWLS-SVM,least square support vector machine regression was employed for the sample data to develop model and obtain the sample datum fitting error.Secondly,the adaptive sample weights were obtained via the proposed improved exponential distribution weighted scheme according to the fitting error.Besides,the hybrid chaos differential evolution simulated annealing (CDESA) algorithm is proposed to obtain the optimal parameters of the LS-SVM.The simulation experiment results show that the outliers influence on the model's performance is eliminated in AWLS-SVM,and that the prediction performance is better than those of WLS-SVM and LS-SVM method.Furthermore,the AWLS-SVM is applied to develop the soft sensor model for aromatics yield,and the satisfactory result is obtained.

Aromatics yield, Soft sensorAdaptive WeightedLeast SquaresSupport Vector MachinesDifferential Evolution (DE)

赵超、陈肇泉、陈晓彦

展开 >

福州大学石油化工学院,福建省福州市,350116

软测量 自适应加权最小二乘支持向量机 混沌粒子群模拟退火算法 催化重整 芳烃收率

国家自然科学基金资助项目国家自然科学基金资助项目高校博士点专项科研基金

60804026137413320133314120004

2019

计算机与应用化学
中国科学院过程工程研究所

计算机与应用化学

CSTPCD北大核心
影响因子:0.386
ISSN:1001-4160
年,卷(期):2019.36(3)
  • 7
  • 12