首页|基于自组织递归模糊神经网络的BOD软测量

基于自组织递归模糊神经网络的BOD软测量

扫码查看
生化需氧量是污水处理过程中评价水质的重要指标之一,神经网络软测量是解决其在线测量困难的主要方法.污水处理是一个动态的过程,而前馈神经网络由于缺乏动态性而难以保证对其的测量精度.本文提出了一种自组织递归模糊神经网络,建立了内部的反馈连接以增强网络动态性能,通过评估神经元的互信息关系和激活强度以增长或修剪规则层神经元,采用梯度下降学习算法进行参数更新,并结合自适应学习率以提高收敛精度.通过对实际污水厂数据的实验结果表明,本文提出的模型结构更紧凑,对出水生化需氧量的预测精度更高.
BOD soft-sensing based on self-organizing recurrent fuzzy neural network

丁海旭、李文静、叶旭东、乔俊飞

展开 >

北京工业大学信息学部,北京市,100124

计算智能与智能系统北京市重点实验室,北京市,100124

国网辽宁省电力有限公司葫芦岛供电公司,辽宁省葫芦岛市,125000

生化需氧量 自组织递归模糊神经网络 互信息 自适应学习率

国家自然科学基金资助项目国家自然科学基金资助项目北京市自然科学基金北京工业大学日新人计划

615330026160300941820072017-RX1-04

2019

计算机与应用化学
中国科学院过程工程研究所

计算机与应用化学

CSTPCD北大核心
影响因子:0.386
ISSN:1001-4160
年,卷(期):2019.36(4)
  • 5
  • 2