首页|基于机器学习的金属氧化物纳米粒子毒性预测

基于机器学习的金属氧化物纳米粒子毒性预测

扫码查看
因为金属氧化物纳米粒子(MNPs)的应用越来越广泛,对于未经检测的MNPs在其实际应用于纳米工业之前,能够对其毒性进行快速、有效地预测是非常重要的.在本工作中,利用收集的文献数据建立了金属氧化物纳米粒子的毒性数据集,其目标变量为MNPs的毒性(log(1/EC50)),候选的自变量有11个.使用遗传一支持向量回归(GA-SVR)组合算法对自变量进行筛选,得到了包含三个变量的用于建模的最优特征集.利用最优特征集形成的新数据集建立了两个用于预测MNPs毒性的定量构效关系(QSAR)模型,即线性核函数支持向量回归(SVR-LKF)和高斯核函数支持向量回归(SVR-RBF)模型.比较两个模型的评价指标发现SVR-RBF模型的性能优于SVR-LKF模型,并且它也优于文献报道的模型.此外,在毒性预测方面SVR-LKF模型也具有较好的预测性能和实用价值.为了探究毒性机理,本文还利用模拟研究分析了各变量对MNPs毒性的影响.因此,本文所提出的方法可以为在机器学习的辅助下MNPs的毒性预测以及毒性机理的研究提供有价值的线索.
Toxicity prediction of metal oxide nanoparticles with the assistance of machine learning
It is momentous to forecast the toxicity of untested metal oxide nanoparticles (MNPs) rapidly and efficaciously before their applications in nanotechnology industry because their applications are more and more widely.In this work,the toxicity dataset of MNPs was established by collecting literature data.The target variable was the cytotoxicity (log (1/ECs0)) of MNPs,and 11 candidate independent variables were selected.The genetic algorithm-support vector regression (GA-SVR) was employed to screen the independent variables.Then the optimal feature set for modeling was obtained,including three variables.Using the new data set formed by the optimal feature set,the support vector regression with linear kernel function (SVR-LKF) and SVR with Gaussian kernel function (SVR-RBF) models were proposed to construct the quantitative structure-activity relationship (QSAR) models for predicting the toxicity of MNPs.By comparison,the performance of the SVR-RBF model was superior to that of the SVR-LKF model in terms of the model evaluation metrics.Meanwhile,it also overmatched the model reported in the literature.Besides,the SVR-LKF model has also impressive performance and practical value in toxicity prediction.In order to explore the toxicity mechanism,the effects of various variables on the toxicity of MNPs were also analyzed by simulation study.Therefore,the method outlined here can provide valuable hints for the toxicity prediction of untested (MNPs) with the assistance of machine learning,and the studies of toxic mechanism of the MNPs.

quantitative structure-activity relationshipmachine learningsupport vector regressiontoxicity predictionmetal oxide nanoparticles

翟秀云、陈明通、陆文聪

展开 >

攀枝花学院智能制造学院,四川,攀枝花,617000

攀枝花学院公共实验中心,四川,攀枝花,617000

上海大学理学院化学系,上海,200444

构效关系 机器学习 支持向量回归 毒性预测 金属氧化物纳米粒子

国家科技部重点研发计划

2016YFB0700504

2019

计算机与应用化学
中国科学院过程工程研究所

计算机与应用化学

CSTPCD北大核心
影响因子:0.386
ISSN:1001-4160
年,卷(期):2019.36(4)
  • 1
  • 36