离群点是与其他正常点属性不同的一类对象,其检测技术在各行业上均有维护数据纯度、保障业内安全等重要应用,现有算法大多是基于距离、密度等传统方法判断检测离群点.本算法给每个对象分配一个"孤立度",即该点相对其邻点的孤立程度,通过排序进行判定,比传统算法效率更高.在AP(affinity propagation)聚类算法的基础上进行改进与优化,提出能检测异常数据点的算法APO(outlier detection algorithm based on affinity propagation).通过加入孤立度模块并计算处理样本点的孤立信息,并引入放大因子,使其与正常点之间的差异更明显,通过增大算法对离群点的敏感性,提高算法的准确性.分别在模拟数据集和真实数据集上进行对比实验,结果表明:该算法与AP算法相比,对离群点的敏感性更加强烈,且本算法检测离群点的同时也能聚类,是其他检测算法所不具备的.
Outlier detection algorithm based on affinity propagation