为提高PM2.5长期预测精度,以空气污染物与气象因素作为影响因子,提出一种基于深度学习的TSMN(time series memory network)预测模型.该模型由两个组件构成,本地记忆组件利用外部记忆方式提高模型长程记忆能力,并与多站点空间关系建模的邻域组件协同从时空角度完成PM2.5长期预测.通过使用不同评价指标将TSMN模型与多种模型进行对比,其中与性能较优的CNN-LSTM模型相比,该模型的RMSE、MAE分别下降5.2%、5.7%,R2提升7.5%.实验结果表明TSMN模型能够有效提高PM2.5浓度的长期预测精度.
Long-term prediction of PM2.5 concentration based on deep learning