首页|基于ELMo和Bi-SAN的中文文本情感分析

基于ELMo和Bi-SAN的中文文本情感分析

扫码查看
目前情感分析模型通常使用word2vec、GloVe等方法生成静态词向量,并且传统的卷积或循环深度模型无法完整地关注上下文,提取特征不充分,影响情感判断.针对上述问题,提出基于ELMo(embedding from lan-guage model)和双向自注意力网络(bidirectional self-attention network,Bi-SAN)的中文文本情感分析模型.首先通过ELMo语言模型训练得到融合词语本身和上下文信息的词向量,解决了一词多义的问题;同时使用预训练的skip-gram算法代替随机初始化的ELMo模型的嵌入层,提高模型的收敛速度;之后使用Bi-SAN提取特征,由于自注意力机制,Bi-SAN可以完整地关注每个词的上下文,提取特征更为全面.同现有的多个情感分析模型对比,该模型在酒店评论数据集上和NLPCC2014 task2中文数据集取得了更高的F1值,验证了模型的有效性.
Chinese text sentiment analysis based on ELMo and Bi-SAN

李铮、陈莉、张爽

展开 >

西北大学 信息科学与技术学院,西安710127

情感分析 词向量 ELMo 自注意力机制

2020YFC15233012019ZDLGY10-01

2021

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

CSTPCDCSCD北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2021.38(8)
  • 11
  • 6