首页|基于固定邻域规模的动态网络影响力最大化探测算法

基于固定邻域规模的动态网络影响力最大化探测算法

扫码查看
以往对影响力最大化问题的研究大多是基于静态图进行优化研究,但在现实中,网络数据量随着时间不断增加,系统不可能实时获取到整个网络中节点之间的连接情况.在传统MaxG探测模型的基础上,采用固定邻域规模和节点邻域层级相结合的方式计算节点影响力大小,提出了新的动态网络探测算法RAS-MaxG(regular area scale-MaxG),解决了传统探测算法由于采用度来衡量节点影响力值所导致的节点之间区分性差的问题.最后通过在真实数据集上的实验对比,验证了所提算法在最终影响力覆盖范围方面具有更好的性能表现.
Dynamic network influence maximization detection algorithm based on regular area scale

赵永伟、班志杰

展开 >

内蒙古大学 计算机学院,呼和浩特010020

动态社交网络 影响力最大化 固定邻域规模 节点探测

61662053

2021

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

CSTPCDCSCD北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2021.38(8)
  • 2