首页|引入生态扩张主义的改进生物地理学优化算法

引入生态扩张主义的改进生物地理学优化算法

Improved BBO algorithms based on ecological imperialism

扫码查看
针对生物地理学优化算法(biogeography-based optimization,BBO)前期搜寻范围不足、后期易陷入局部最优等问题,提出一种引入生态扩张主义(ecological imperialism,EI)的改进生物地理学优化算法(EI-BBO).首先,该算法通过在原始栖息地的周围寻找新栖息地,增强了初始化群体的多样性;其次,通过对栖息地进行改良式扩张,提高了算法后期的收敛效率;最后,通过梯度下降对最优解领域进行二次收敛,提高了算法的收敛精度.在CEC2014常用的12个优化测试函数上进行50次蒙特卡罗实验,结果表明无论是最优适应度值、平均适应度值还是标准差值EI-BBO,该算法总体表现均优于其他三种智能优化算法,说明EI-BBO能够提高寻找最优解的能力并提升搜索稳定性.

张永贤、陈杨谨瑜、邰万文、李伟

展开 >

华东交通大学 电气与自动化工程学院,南昌330052

生物地理学优化算法 生态扩张主义 最优化 群体智能

61763012

2021

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

CSTPCDCSCD北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2021.38(9)
  • 1
  • 7