首页|基于深度学习的视觉单目标跟踪综述

基于深度学习的视觉单目标跟踪综述

扫码查看
单目标跟踪是一种在视频中利用目标外观和上下文信息对单个目标分析运动状态、提供定位的技术,在智能监控、智能交互、导航制导等方面具有应用前景,但遮挡、背景干扰、目标变化等问题导致实际应用的进展缓慢.随着近年来深度学习的快速发展,研究使用深度学习技术优化单目标跟踪算法已成为计算机视觉领域的热点之一.围绕基于深度学习的单目标跟踪算法,在分析了单目标跟踪的基本原理基础上,从相关滤波、孪生网络、元学习、注意力、循环神经网络和生成对抗网络六个方面,根据核心算法的不同分别进行了概述和分析;此外,对研究现状进行了总结,提出了算法的发展趋势和优化思路.
Survey on visual single object tracking based on deep learning

张长弓、杨海涛、王晋宇、冯博迪、李高源、高宇歌

展开 >

航天工程大学 航天信息学院,北京 101400

单目标跟踪 深度学习 孪生网络 相关滤波 元学习 注意力机制

2021

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

CSTPCDCSCD北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2021.38(10)
  • 6
  • 76