首页|基于注意力的时空神经网络城市区域交通流量预测

基于注意力的时空神经网络城市区域交通流量预测

扫码查看
可靠的交通流量预测在交通管理和公共安全方面具有重要意义.然而,这也是一件具有挑战性的任务,因为它易受到空间依赖性、时间依赖性以及一些额外因素(天气和突发事件等)的影响.现有的大部分工作只考虑了交通数据的部分属性,导致建模不充分,预测性能不理想.因此,提出了一种新的端到端的深度学习模型——时空注意力卷积长短期记忆网络(ST-AttConvLSTM),用于交通流量的预测.ST-AttConvLSTM将整个模型分为三个分支进行建模,每个分支经过残差神经网络提取局部的空间特征,同时进一步结合天气等外部因素,再利用卷积长短时记忆网络(ConvLSTM)和注意力模型两种组件来挖掘流量的潜在规律,捕获时空维度上数据的关联性.使用北京市和纽约市两个真实的移动数据集来评估提出的方法,实验结果表明,该方法比知名的基准方法有更高的预测精度.
Predicting citywide traffic flow using attention-based spatial-temporal neural network

廖挥若、杨燕

展开 >

西南交通大学 计算机与人工智能学院,成都611756

四川省云计算与智能技术重点实验室,成都611756

交通流量预测 深度学习 卷积长短时记忆网络 注意力模型

61976247

2021

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

CSTPCDCSCD北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2021.38(10)
  • 4
  • 1