首页|基于增强型图卷积的骨架识别模型

基于增强型图卷积的骨架识别模型

扫码查看
针对现有骨架动作识别主要采用双流框架,在提取时间空间以及通道特征方法上存在的问题,提出一个ADGCN,用于骨架动作识别.首先对骨架数据进行建模,分别将关节、骨骼及其关节和骨骼的运动信息输入到多流框架的单个流.然后将输入的数据传送到提出的有向图卷积网络中进行提取关节和骨骼之间的依赖关系,再利用提出的时空通道注意力网络(STCN),增强每层网络中关键关节的时间、空间以及通道的信息.最后将四个流的信息通过加权平均计算动作识别的精度,输出动作的预测结果.此模型在两个大型数据集NTU-RGB+D和Kinectics-Skeleton中进行训练和验证,验证的结果与基线方法DGNN(有向图神经网络)相比,在NTU-RGB+D数据集上,在两个交叉子集CS和CV上的准确率分别提升了2.43%和1.2%.在Kinectics-Skeleton数据集的top1和top5上的准确率分别提升了0.7%和0.9%.提出的ADGCN可以有效地增强骨架动作识别的性能,在两个大型数据集上的效果都有所提升.
Skeleton recognition model based on enhanced graph convolution

兰红、何璠、张蒲芬

展开 >

江西理工大学 信息工程学院,江西 赣州341000

动作识别 图卷积 注意力增强 多流框架

2020年江西省大学生创新基金

2021

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

CSTPCDCSCD北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2021.38(12)
  • 1
  • 3