首页|融合Bi-LSTM与多头注意力的分层强化学习推理方法

融合Bi-LSTM与多头注意力的分层强化学习推理方法

扫码查看
知识推理作为知识图谱补全中一项重要任务,受到了学术界的广泛关注.针对知识推理可解释性差、不能利用隐藏语义信息和奖励稀疏的问题提出了一种融合Bi-LSTM与多头注意力机制的分层强化学习方法.将知识图谱通过谱聚类分簇,使智能体分别在簇与实体间进行推理,利用Bi-LSTM与多头注意力机制融合模块对智能体的历史信息进行处理,可以更有效地发现和利用知识图谱隐藏的语义信息.Hight智能体通过分层策略网络选择目标实体所在的簇,指导Low智能体进行实体间的推理.利用强化学习智能体可以有效地解决可解释性差的问题,并通过相互奖励机制对两个智能体的动作选择以及搜索路径给予奖励,以解决智能体奖励稀疏的问题.在FB15K-237、WN18RR、NELL-995三个公开数据集上的实验结果表明,提出的方法能够捕捉序列数据中的长期依赖关系对长路径进行推理,并且在推理任务中的性能优于同类方法.
Hierarchical reinforcement learning knowledge reasoning method integrating Bi-LSTM and multi-head attention
Knowledge reasoning is a critical task in knowledge graph completion and has garnered significant academic atten-tion.Addressing issues such as poor interpretability,inability to utilize hidden semantic information,and sparse rewards,this paper proposed a hierarchical reinforcement learning method integrating Bi-LSTM and multi-head attention mechanisms.The knowledge graph was clustered via spectral clustering,enabling agents to reason between clusters and entities.The Bi-LSTM and multi-head attention mechanism module processed the agent's historical information,effectively uncovering and utilizing hidden semantic information in the knowledge graph.The high-level agent selected the cluster containing the target entity through a hierarchical policy network,guiding the low-level agent in entity reasoning.Reinforcement learning allows the agents to solve interpretability issues,and a mutual reward mechanism addresses sparse rewards by rewarding agents'action choices and search paths.Experimental results on FB15K-237,WN18RR,and NELL-995 datasets show that the proposed method captures long-term dependencies in sequential data for long-path reasoning,outperforming similar methods in reasoning tasks.

knowledge reasoninglayered reinforcement learningBi-LSTMmulti-head attention mechanism

李卫军、刘世侠、刘雪洋、丁建平、苏易礌、王子怡

展开 >

北方民族大学计算机科学与工程学院,银川 750021

北方民族大学图形图像智能处理国家民委重点实验室,银川 750021

知识推理 分层强化学习 Bi-LSTM 多头注意力机制

2025

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2025.42(1)