首页|神经先验增强的抗干扰鲁棒自动驾驶导航

神经先验增强的抗干扰鲁棒自动驾驶导航

扫码查看
自动驾驶车辆广泛依赖感知系统来进行城市导航和环境理解,然而现有研究大多局限于良好的城市驾驶环境,在恶劣天气以及外部干扰下导致的传感器故障和感知失灵等严重影响现有自动驾驶系统的实际落地..为此提出了一种基于神经先验的自动驾驶信息重建算法,通过对大范围自动驾驶场景的隐式建模密集地存储场景几何先验,并基于注意力机制结合隐式神经先验进行自动驾驶感知信息的鲁棒重建,最终提出一个通用的自动驾驶导航鲁棒性增强框架.在CARLA自动驾驶模拟器仿真实验中,该算法显著提升了多个现有自动驾驶模型在外部干扰下的导航性能,使自动驾驶模型在攻击和干扰下的性能衰减率从82.74%下降到了 8.84%,证明了所提方法的通用性和有效性.
Neural prior based reconstruction for robust autonomous navigation against various disturbances
Autonomous vehicles heavily rely on perception systems for urban navigation and environmental understanding.De-spite extensive researches about driving in favorable urban conditions,sensor failures and perception impairments under adverse weather and external interferences significantly impact the practical deployment of current autonomous driving systems.This paper proposed a neural prior-based autonomous driving information reconstruction algorithm for robust end-to-end naviga-tion.This algorithm densely stored scene geometry priors through implicit representation of driving scenarios and designed a reconstruction algorithm for perception based on the attention mechanism.In addition,it proposed a general framework to enhance the robustness of self-driving performance.Extensive experiments in the CARLA simulator demonstrate the generality and effectiveness of the proposed method,and the performance degradation rate of current self-driving models under external disturbances is reduced from 82.74%to 8.84%,which largely improves the driving performance of multiple existing self-driving models under external interferences.

autonomous drivingrobustnessneural radiance field

穆凡、刘哲

展开 >

上海交通大学电子信息与电气工程学院,上海 200240

自动驾驶 鲁棒性 神经辐射场

2025

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2025.42(1)