首页|加强决策边界与自监督的在线持续学习方法

加强决策边界与自监督的在线持续学习方法

扫码查看
针对在线持续学习于图像分类中既要适应新数据,又要减轻灾难性遗忘这一问题,基于重放的方法在减轻在线持续学习的灾难性遗忘方面展现出了优良性能.然而,此类方法中的大多数模型往往更倾向于学习与对象无关的解决方案,这些方案难以泛化且易于遗忘,因此,学习最能够代表类别的特征对于解决灾难性遗忘问题显得极为关键.基于此,提出加强决策边界与自监督的在线持续学习方法.首先,该方法通过加强新类之间的决策边界,帮助模型更好地进行任务的分类.其次,使用了一种融合的自监督学习方法,帮助模型更好地学习每个类的代表特征.通过与主流在线持续学习算法在公开数据集CIFAR-10和CIFAR-100上的实验对比,当内存库M为100时,该方法在CIFAR-10上的平均准确率达到了 60.8%,平均遗忘率达到了 15.5%.当内存库M为500时,该方法在CIFAR-100上的平均准确率达到了 25.9%,平均遗忘率达到了 13.7%.这一结果验证了加强决策边界与自监督的在线持续学习方法对减轻灾难性遗忘是有效的.
Online continual learning method strengthening decision boundaries and self-supervision
To address the issue of online continual learning in image classification,which requires adapting to new data while alleviating catastrophic forgetting,replay-based methods have demonstrated excellent performance in mitigating this problem.However,most models in these methods tend to favor learning object-agnostic solutions,which are difficult to generalize and prone to forgetting.Therefore,learning features that best represent categories is crucial for solving the catastrophic forgetting issue.This paper proposed an online continual learning approach that enhanced decision boundaries and incorporates self-supervision.Firstly,this method strengthened the decision boundaries between new classes,helping the model to classify tasks more effectively.Secondly,it employed a fused self-supervised learning approach,enabling the model to better learn repre-sentative features for each class.Through experiments comparing this method with mainstream online continual learning algo-rithms on the CIFAR-10 and CIFAR-100 public datasets,it observes that when the memory buffer M is set to 100,this method achieves an average accuracy of 60.8%and an average forgetting rate of 15.5%on CIFAR-10.When M is increased to 500,the method achieves an average accuracy of 25.9%and an average forgetting rate of 13.7%on CIFAR-100.These results vali-date that the approach of enhancing decision boundaries and incorporating self-supervision effectively alleviates catastrophic forgetting.

continuous learning(CL)catastrophic forgettingcontrastive learningdecision boundaries

王伟、尤可鑫、刘晓芮

展开 >

辽宁工程技术大学电子与信息工程学院,辽宁葫芦岛 125105

辽宁工程技术大学基础教学部,辽宁葫芦岛 125105

持续学习 灾难性遗忘 对比学习 决策边界

2025

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2025.42(1)