首页|基于匹配的模型卸载边缘联邦学习方法

基于匹配的模型卸载边缘联邦学习方法

扫码查看
针对边缘计算环境下联邦学习中因资源异质性导致的"滞后者"效应等问题,提出基于匹配的模型卸载边缘联邦学习方法(Fed-MBMO).该方法通过收集边缘设备的性能分析结果,将设备分别划分为强、弱客户端,考虑了模型训练的四个阶段时间占比,弱客户端通过冻结部分模型以节省在特征层上反向传播的时间,并将模型卸载至"强客户端"进行额外的训练,最后将强客户端模型的特征层与弱客户端的全连接层进行模型重构.为提高模型卸载效率,综合考虑模型特征层的相似度与任务完成时间构建了卸载成本矩阵,并将问题转换为迭代求解基于二部图的最优匹配问题,提出基于Kuhn-Munkres(KM)的模型卸载算法并进一步分析了 Fed-MBMO算法的时间复杂度.实验结果表明,在资源与数据极端异质的情况下,该方法能够加速模型收敛,模型训练时间与FedAvg、FedUE和Aergia相比分别平均减少46.65%、12.66%、38.07%.实验结果证明了所提的Fed-MBMO算法能够有效解决"滞后者"效应问题并显著提高联邦学习效率.
Match-based model offloading for edge federated learning
Aiming at problems such as the"straggler effect"caused by resource heterogeneity in federated learning in edge computing environments,this paper proposed a match-based model offloading for edge federated learning(Fed-MBMO).This method collected performance analysis results of edge devices,divided devices into strong and weak clients,and considered the time proportion of the four phases of model training,weak clients saved the time of backpropagation on the feature layers by freezing part of the model,and offload the model to the strong client for additional training,finally,the strong clients'feature layers were then reconstructed with the weak clients'fully connected layers.In order to improve the efficiency of model off-loading,the offloading cost matrix is constructed by comprehensively considering the similarity of model feature layers and task completion time,and transform the problem into an iterative solution of the optimal matching problem based on bipartite graph,the proposed approach used a KM-based model offloading algorithm and further analyzed the time complexity of the Fed-MBMO algorithm.Experimental results show that in the case of extremely heterogeneous resources and datasets,this method can accelerate model convergence,and the model training time can be reduced by an average of 46.65 percent,12.66 percent and 38.07 percent compared to FedAvg,FedUE and Aergia,respectively.The experimental results show that the Fed-MBMO algorithm can effectively solve the"straggler effect"problem and significantly improve the efficiency of federated learning.

federated learningstragglers'effectmodel offloadingstrong and weak matchingresource heterogeneitymodel reconstructionedge computing

顾永跟、张吕基、吴小红、陶杰

展开 >

湖州师范学院信息工程学院,浙江湖州 313000

联邦学习 滞后者效应 模型卸载 强弱匹配 资源异质性 模型重构 边缘计算

2025

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2025.42(1)