首页|交通流优化膨胀控制遗传规划算法

交通流优化膨胀控制遗传规划算法

扫码查看
针对遗传规划(GP)算法在大规模动态交通流分配中训练超启发式策略时,算法迭代次数的增加而个体平均大小不断膨胀的问题,提出应用不同GP控制膨胀方法来限制种群中大尺寸个体的遗传,让算法能够在训练过程中找到更小且性能更优的超启发式策略.考虑到超启发式策略在如网格式、环形放射式、自由式的不同结构路网上可能存在性能差异,会影响算法在训练过程中对个体的选择,采用不同结构的路网训练出超启发式策略以进行分析比较.训练后的超启发式策略在不同规模和车流量的大城市路网上进行模拟测试.结论是基于双锦标赛的膨胀控制方法对不同结构路网的效果最优,得到的GP算法对比现有调度方法能获得路网整体更短的平均旅行时间,更精简有效的超启发式策略,提高决策效率.
Traffic flow optimization bloat control genetic programming algorithm
In addressing the issue of increasing individual average size with iterations of the GP algorithm for training hyper-heuristic strategies in dynamic traffic assignment,this paper proposed various methods for bloat control in GP to constrain the genetic inheritance of large-sized individuals within the population.This enabled the algorithm to discover smaller-sized yet higher-performing hyper-heuristic strategies during the training process.Considering the potential performance differences of hyper-heuristic strategies on various structured road networks such as grid,ring radial,and free style networks,this paper adopted different structured road networks to train hyper-heuristic strategies for analysis and comparison.The trained hyper-heuristic strategies underwent simulation testing on urban road networks of varying scales and traffic volumes.The conclusion is that the double tournament bloat control method performs the best for different structured road networks.The GP algorithm obtained from this study demonstrates its ability to achieve shorter overall average travel times for road networks compared to existing dispatch methods.Consequently,more concise and effective hyper-heuristic strategies are derived,leading to en-hanced decision-making efficiency.

genetic programming(GP)dynamic traffic flow optimizationbloat controlhyper-heuristic strategiesdouble tournament

胡晓敏、段宇晖、欧炜标、黄佳玟、林晓漫、李敏

展开 >

广东工业大学计算机学院,广州 510006

遗传规划 动态交通流优化 控制膨胀 超启发式策略 双锦标赛法

2025

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2025.42(1)