首页|决策学习型蜣螂优化算法的无人机协同路径规划

决策学习型蜣螂优化算法的无人机协同路径规划

扫码查看
针对多无人机协同路径规划问题,提出了一种决策学习型蜣螂优化算法(DLDBO).传统蜣螂优化算法(DBO)种群之间缺乏信息互换,容易陷入局部最优解.因此,利用Pearson相关系数计算个体之间的相似性,通过相似性指标判断并作出决策:若不相似,利用折射反向学习计算得到候选解,在一定程度上提高个体之间影响的同时增强算法跳出局部最优的能力;若相似,利用所提出的链式邻近学习引导蜣螂个体,增加影响个体更新的因素,充分促进个体之间的信息交流.在CEC2017测试套件的29个测试函数上进行了充分的对比实验,结果表明,DLDBO性能明显优于其他六种先进的变体算法.利用DLDBO规划无人机群的飞行路径,最终能够得到较为理想的协同路径并且有效避开威胁,优于其余三种优秀的协同路径规划算法,满足了无人机协同飞行的需求.
UAV collaborative path planning based on decision learning dung beetle optimization algorithm
A decision learning dung beetle optimization algorithm(DLDBO)solves the problem of multi-UAV collaborative path planning.The traditional dung beetle optimization algorithm(DBO)lacks information exchange among populations and easily falls into local optimal solutions.Therefore,this paper used the Pearson correlation coefficient to calculate the similarity between individuals and used the similarity index to make decisions.If individuals were not similar,it applied refraction reverse learning to calculate the candidate solution,which improved interaction among individuals and enhanced the algo-rithm's ability to escape local optima.If individuals were similar,it guided dung beetle individuals using the proposed chain proximity learning,increasing factors affecting individual renewal and promoting information exchange.Comparative experi-ments on 29 test functions of the CEC2017 test suite show that the DLDBO algorithm significantly outperforms six other advanced variants.Using DLDBO for UAV flight path planning obtains an ideal collaborative path,effectively avoiding threats and surpassing three other excellent collaborative path planning algorithms,meeting the needs of UAV collaborative flight.

dung beetle optimization algorithmrefraction reverse learningchain proximity learningUAV collaborative path planning

张乐、胡毅文、杨红、杨超、马宏远

展开 >

沈阳大学智能科学与工程学院,沈阳 110044

沈阳大学信息工程学院,沈阳 110044

蜣螂优化算法 折射反向学习 链式邻近学习 无人机协同路径规划

2025

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2025.42(1)