首页|求解外卖配送问题的深度强化学习算法

求解外卖配送问题的深度强化学习算法

扫码查看
以最小化骑手费用效益比为优化目标,采用最小比率旅行商问题对外卖配送问题进行建模.针对目前算法在求解该问题时计算精度低、算法稳定性差等问题,设计一种基于深度强化学习的DRL-MFA算法.首先,定义外卖配送问题的马尔可夫决策模型来模拟智能体与环境的交互过程;其次,在编码阶段设计多特征聚合嵌入子层,实现特征间的优势互补并提高模型对非线性问题的建模能力;最后,在解码阶段通过注意力机制和指针网络计算解的概率分布,采用策略梯度算法对网络模型进行训练.通过经典算例和长春市仿真案例的相关实验分析,结果表明该算法能够有效地求解外卖配送问题,且与其他启发式算法相比,具有更高的稳定性和求解精度.此外,进行参数灵敏度实验,考虑不同定价策略对外卖配送的影响,使研究结果更具现实意义.
Deep reinforcement learning approach for solving takeout delivery problem
This paper took the minimization of the rider's cost-benefit ratio as the optimization objective and used the mini-mum ratio traveling salesman problem to model the takeout delivery problem.Aiming at the issues of low accuracy and poor stability of current algorithms for solving this problem,this paper proposed a DRL-MFA algorithm based on deep reinforcement learning.Firstly,the algorithm defined the takeout delivery problem as a Markov decision model to simulate the process between agent and environment.Secondly,the algorithm used a multi-feature aggregation embedding sublayer in the encoder to achieve the advantageous complementarity among the features and improve the modelling ability of nonlinear problems.Finally,the algorithm calculated the probability distribution of the solution by the attention mechanism and pointer network in the decoder and used the strategy gradient to train the network.Through the experimental analysis of classic examples and simu-lation cases in Changchun,the results show that the proposed algorithm can effectively solve the takeout delivery problem,and has higher stability and accuracy than other heuristic algorithms.In addition,this paper conducted the sensitivity experiment to explore the impact of different pricing strategies on takeout delivery,which makes the research more realistic and practical.

takeout deliveryminimum ratio traveling salesman problemdeep reinforcement learningmulti-feature embed-dingattention mechanism

张旭阳、刘勇、马良

展开 >

上海理工大学管理学院,上海 200093

外卖配送问题 最小比率旅行商问题 深度强化学习 多特征嵌入 注意力机制

2025

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2025.42(1)