首页|基于跨模态特征重构与解耦网络的多模态抑郁症检测方法

基于跨模态特征重构与解耦网络的多模态抑郁症检测方法

扫码查看
抑郁症是一种广泛而严重的心理健康障碍,需要早期检测以便进行有效的干预.因为跨模态之间存在的信息冗余和模态间的异质性,集成音频和文本模态的自动化抑郁症检测是一个具有挑战性但重要的问题,先前的研究通常未能充分地明确学习音频-文本模态的相互作用以用于抑郁症检测.为了解决这些问题,提出了基于跨模态特征重构与解耦网络的多模态抑郁症检测方法(CFRDN).该方法以文本作为核心模态,引导模型重构音频特征用于跨模态特征解耦任务.该框架旨在从文本引导重构的音频特征中解离共享和私有特征,以供后续的多模态融合使用.在DAIC-WoZ和E-DAIC数据集上进行了充分的实验,结果显示所提方法在多模态抑郁症检测任务上优于现有技术.
Multi-modal depression detection method based on cross-modal feature reconstruction and decoupling network
Depression is a widespread and severe mental health disorder,and requires early detection for effective interven-tion.Automated depression detection that integrates audio and text modalities addresses the challenges posed by information re-dundancy and modality heterogeneity.Previous studies often fail to capture the interaction between audio and text modalities for effective depression detection.To overcome these limitations,this study proposed a multi-modal depression detection method based on cross-modal feature reconstruction and a decoupling network(CFRDN).The method used text as the core modality,guiding the model to reconstruct audio features for cross-modal feature decoupling tasks.The framework separated shared and private features from the text-guided reconstructed audio features for subsequent multimodal fusion.Extensive experiments on the DAIC-WoZ and E-DAIC datasets demonstrate that the proposed method outperforms state-of-the-art approaches in multimo-dal depression detection tasks.

multimodaldepression detectionfeature reconstructionfeature decouplingfeature fusion

赵小明、谌自强、张石清

展开 >

浙江理工大学计算机科学与技术学院,杭州 310018

台州学院智能信息处理研究所,浙江台州 318000

多模态 抑郁症检测 特征重构 特征解耦 特征融合

2025

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2025.42(1)