首页|一种基于旋转-平移解耦优化的在线稠密重建算法

一种基于旋转-平移解耦优化的在线稠密重建算法

扫码查看
为了解决传统算法中由旋转和平移耦合优化引起的相互干扰以及量纲差异问题,提出了一种基于旋转-平移解耦优化的稠密重建算法.该算法将相机位姿空间拆分成旋转和平移两个独立子空间,并在子空间内独立地搜索两分量的优质解.在每次迭代中,该算法针对旋转和平移的当前估计值设置搜索邻域,并在搜索邻域内采样候选解,通过评估选出最优解以更新估计值.迭代该过程,直到满足结束条件.实验结果显示,该算法有效地减少了旋转与平移优化过程中的相互干扰,从而提高了优化的效率和精度.这证明了在稠密重建中相机位姿估计环节,该算法设计具有一定优势.
Novel method for online dense reconstruction by rotation-translation decoupling optimization
To address the optimization instability caused by the rotation-translation-coupling-optimization in traditional algo-rithms,this paper proposed a novel dense reconstruction algorithm based on rotation-translation decoupling optimization.The algorithm divided the camera pose space into independent rotation and translation subspaces and independently searches for the optimal solution within each subspace.During each iteration,the algorithm set search neighborhoods for the estimated values of rotation and translation,samples candidate solutions within these neighborhoods,and selected the optimal solutions through evaluation to update the estimates.Iterate this process until the termination condition was met.Experimental results verify that the algorithm effectively reduces interference between rotation and translation during the optimization process,thereby enhan-cing the efficiency and accuracy of the optimization.It demonstrates that the algorithm has certain advantages in the camera pose estimation stage of dense reconstruction.

online dense reconstructiondecoupling optimizationcamera pose estimationimplicit surface registration

郭帆、吕泽均、张严辞

展开 >

四川大学计算机学院,成都 610065

四川大学视觉合成图形图像技术国家重点学科实验室,成都 610065

在线稠密重建 解耦优化 相机位姿估计 隐式曲面配准

2025

计算机应用研究
四川省电子计算机应用研究中心

计算机应用研究

北大核心
影响因子:0.93
ISSN:1001-3695
年,卷(期):2025.42(1)