AIRPORT BAGGAGE STACKING STRATEGY BASED ON SUPPORT VECTOR MACHINE
扫码查看
点击上方二维码区域,可以放大扫码查看
原文链接
国家科技期刊平台
NETL
NSTL
万方数据
维普
为了解决机场行李在转运过程中存在的装箱问题,从码放策略、学习算法模型两个方面进行研究,提出基于深度稀疏最小二乘支持向量机模型(Deep Sparse Least Squares Support Vector Machine,DSLSSVM)的行李码放策略.该策略包括评价和决策两个部分.在评价时,通过将行李车与行李离散化,建立两者的数学关系,从而得到评价行李码放位置优劣的评估参数;在决策时,利用深度稀疏最小二乘支持向量机模型学习工人的码放经验,将决策问题转化为二分类问题,选择最佳码放位置进行码放.仿真实验表明:该算法可以达到较高的分类精度,并且能够得到比较理想的装箱效果,具有较强的实用性,满足机场行李高效运输的要求.