首页|基于改进强化学习算法的移动机器人路径规划研究

基于改进强化学习算法的移动机器人路径规划研究

PATH PLANNING FOR MOBILE ROBOT BASED ON IMPROVED REINFORCEMENT LEARNING ALGORITHM

扫码查看
针对强化学习中的标准Q-learning算法应用在路径规划中存在的计算效率低的问题,提出一种改进Q-learning算法.改进后的Q-learning算法在原来标准Q-learning算法的基础上增加了一层深度学习层并且在算法初始化的过程中加入了关于环境的先验知识作为启发信息,从而避免了学习前期探索的盲目性,有效地提高了算法计算效率.通过与标准Q-learning算法、增加深度学习层的Q-learning算法、引入人工引力场的Q-learning算法、深度双Q网络相比较,改进后的Q-learning算法在小维度的环境下具有更高的计算效率.

王慧、秦广义、夏鹏、杨春梅、王刚

展开 >

东北林业大学机电工程学院 黑龙江 哈尔滨150040

强化学习 路径规划 改进Q-learning算法 移动机器人

黑龙江省应用技术研究与开发计划中央高校基本科研业务费专项

GA19A4022572020 DR12

2022

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2022.39(7)
  • 1
  • 12