首页|基于自适应邻域局部保留ELM-AE的机械故障诊断

基于自适应邻域局部保留ELM-AE的机械故障诊断

扫码查看
针对机器学习故障诊断中存在的先验知识依赖以及数据利用不充分问题,提出一种自适应邻域的局部保留极限学习机自动编码器方法。成对样本在原始数据空间和嵌入的表示空间中引入欧几里得距离惩罚因子,实现数据样本的相似性分类;提出一个统一的目标函数,可以同时学习数据表示和关联矩阵,并提出一个软判别约束防止过度拟合。实验结果表明,融合学习关联矩阵和数据表示方法具有学习速度快、泛化能力强和诊断精度高等优点。
MECHANICAL FAULT DIAGNOSIS BASED ON ADAPTIVE NEIGHBORHOOD PRESERVING ELM-AE
In order to solve the problems of prior knowledge dependence and insufficient data mining in machine learning fault diagnosis,a local preserving extreme learning machine automatic encoder based on adaptive neighborhood is proposed.Euclidean distance penalty factor was introduced into the original data space and the embedded representation space for paired samples to realize the similarity classification of data samples.A unified objective function was proposed,which could simultaneously learn data representation and correlation matrix,and a soft discriminative constraint was proposed to prevent overfitting.The experimental results show that the fusion learning association matrix and data representation method has the advantages of fast learning speed,strong generalization ability and high diagnostic accuracy.

Extreme learning machineAutomatic encoderAffinity learning matrixAdaptive neighborhoodMachine fault diagnosis

张焕可、王帅旗、陈会涛

展开 >

许昌电气职业学院机电工程系 河南许昌 461000

河南理工大学机械与动力工程学院 河南焦作 454003

极限学习机 自动编码器 关联矩阵学习 自适应邻域 机器故障诊断

2018年度河南省重点研发与推广专项

182102310793

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(1)
  • 10