首页|基于改进Mask R-CNN的受电弓碳滑板优化检测算法

基于改进Mask R-CNN的受电弓碳滑板优化检测算法

扫码查看
针对传统受电弓碳滑板检测中检测效率低、检测精度差等缺点,提出一种基于Mask R-CNN的优化改进算法.该算法采用铁道部受电弓损坏评定的新规定及实地的样本数据集,通过改进特征提取算法的网络结构以及优化损失值来提高算法对图像的处理效率,实现受电弓碳滑板缺陷的掩膜准确标注,有效减小受电弓滑板的损毁对电力机车运行的影响.最终通过实验验证该算法对受电弓碳滑板缺陷的检测精度和效率有明显的提升作用.
CARBON PLATE OPTIMIZED DETECTION ALGORITHM OF PANTOGRAPH BASED ON IMPROVED MASK R-CNN
In this paper,an optimized and improved algorithm based on Mask R-CNN is proposed to solve the shortcomings of traditional pantograph carbon slide detection,such as low detection efficiency and poor detection accuracy.The algorithm adopted the ministry of railways pantograph damage assessment of the new regulations and field of the sample data sets.By improving feature extraction algorithm of network structure and optimizing the loss value,the efficiency of the algorithm of image processing was improved,which realized the pantograph slide carbon defects mask label accurately and reduced the loss of the pantograph slide effects on electric locomotive running.Experimental results show that this algorithm can improve the detection accuracy and efficiency of pantograph carbon slide.

Improved Mask R-CNNMask labeling accuracyFeature extractionLoss value optimizationPanto-graph detecting

韩璐、刘太豪、宋海亮、宋佳

展开 >

西南石油大学电气信息学院 四川成都 610500

改进MaskR-CNN 掩膜标注准确率 特征提取 损失值优化 受电弓检测

国家自然科学基金项目

51607151

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(1)
  • 12