计算机应用与软件2024,Vol.41Issue(1) :105-111,176.DOI:10.3969/j.issn.1000-386x.2024.01.016

基于改进Mask R-CNN的受电弓碳滑板优化检测算法

CARBON PLATE OPTIMIZED DETECTION ALGORITHM OF PANTOGRAPH BASED ON IMPROVED MASK R-CNN

韩璐 刘太豪 宋海亮 宋佳
计算机应用与软件2024,Vol.41Issue(1) :105-111,176.DOI:10.3969/j.issn.1000-386x.2024.01.016

基于改进Mask R-CNN的受电弓碳滑板优化检测算法

CARBON PLATE OPTIMIZED DETECTION ALGORITHM OF PANTOGRAPH BASED ON IMPROVED MASK R-CNN

韩璐 1刘太豪 1宋海亮 1宋佳1
扫码查看

作者信息

  • 1. 西南石油大学电气信息学院 四川成都 610500
  • 折叠

摘要

针对传统受电弓碳滑板检测中检测效率低、检测精度差等缺点,提出一种基于Mask R-CNN的优化改进算法.该算法采用铁道部受电弓损坏评定的新规定及实地的样本数据集,通过改进特征提取算法的网络结构以及优化损失值来提高算法对图像的处理效率,实现受电弓碳滑板缺陷的掩膜准确标注,有效减小受电弓滑板的损毁对电力机车运行的影响.最终通过实验验证该算法对受电弓碳滑板缺陷的检测精度和效率有明显的提升作用.

Abstract

In this paper,an optimized and improved algorithm based on Mask R-CNN is proposed to solve the shortcomings of traditional pantograph carbon slide detection,such as low detection efficiency and poor detection accuracy.The algorithm adopted the ministry of railways pantograph damage assessment of the new regulations and field of the sample data sets.By improving feature extraction algorithm of network structure and optimizing the loss value,the efficiency of the algorithm of image processing was improved,which realized the pantograph slide carbon defects mask label accurately and reduced the loss of the pantograph slide effects on electric locomotive running.Experimental results show that this algorithm can improve the detection accuracy and efficiency of pantograph carbon slide.

关键词

改进MaskR-CNN/掩膜标注准确率/特征提取/损失值优化/受电弓检测

Key words

Improved Mask R-CNN/Mask labeling accuracy/Feature extraction/Loss value optimization/Panto-graph detecting

引用本文复制引用

基金项目

国家自然科学基金项目(51607151)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
参考文献量12
段落导航相关论文