基于多特征融合卷积的步态识别算法研究
GAIT RECOGNITION ALGORITHM BASED ON MULTI-FEATURE FUSION CONVOLUTION
杨鹏 1应娜 1李怡菲1
作者信息
- 1. 杭州电子科技大学通信工程学院 浙江杭州 310018
- 折叠
摘要
针对GaitSet算法中主干网络学习能力和分类能力较弱,提出基于多特征融合卷积网络的步态识别算法(MFFC-GaitSet).算法通过多特征融合卷积重建GaitSet网络增强网络学习能力,同时对三元组损失函数进行平滑优化;利用形态学处理对步态轮廓图进行修补.算法在Casia-B数据集上进行验证,步态识别精度达到85.811%,提高2.6%;模型权重仅增加6%.算法可以有效减少复杂环境对步态识别的负面影响,实现复杂环境下高精度的步态识别.实验结果表明,方法能够实现较为精确的步态识别,并具有较佳的鲁棒性和泛化能力.
Abstract
Aimed at the weak learning and classification ability of the backbone network in the GaitSet algorithm,the gait recognition algorithm based on the multi-feature fusion convolution(MFFC-GaitSet)is proposed.The algorithm reconstructed the GaitSet network by multi-feature fusion convolution to enhance the network learning ability,and smoothed and optimized the ternary loss function.The gait contour map was repaired by morphological processing.The algorithm was validated on the Casia-B dataset and achieved a gait recognition accuracy of 85.811%,with the increase of 2.6%.The model weight was increased by only 6%.The algorithm could effectively reduce the negative influence of complex environment on gait recognition and achieve high-precision gait recognition in complex environment.The experimental results show that the method can achieve more accurate gait recognition with better robustness and generalization ability.
关键词
步态识别/多特征融合/形态学处理/三元组平滑优化/Casia-B数据集Key words
Gait recognition/Multi-feature fusion/Morphological processing/Triplet smoothing optimization/Casia-B dataset引用本文复制引用
基金项目
浙江省自然科学基金项目(LY16F010013)
出版年
2024