首页|基于多特征融合卷积的步态识别算法研究

基于多特征融合卷积的步态识别算法研究

扫码查看
针对GaitSet算法中主干网络学习能力和分类能力较弱,提出基于多特征融合卷积网络的步态识别算法(MFFC-GaitSet)。算法通过多特征融合卷积重建GaitSet网络增强网络学习能力,同时对三元组损失函数进行平滑优化;利用形态学处理对步态轮廓图进行修补。算法在Casia-B数据集上进行验证,步态识别精度达到85。811%,提高2。6%;模型权重仅增加6%。算法可以有效减少复杂环境对步态识别的负面影响,实现复杂环境下高精度的步态识别。实验结果表明,方法能够实现较为精确的步态识别,并具有较佳的鲁棒性和泛化能力。
GAIT RECOGNITION ALGORITHM BASED ON MULTI-FEATURE FUSION CONVOLUTION
Aimed at the weak learning and classification ability of the backbone network in the GaitSet algorithm,the gait recognition algorithm based on the multi-feature fusion convolution(MFFC-GaitSet)is proposed.The algorithm reconstructed the GaitSet network by multi-feature fusion convolution to enhance the network learning ability,and smoothed and optimized the ternary loss function.The gait contour map was repaired by morphological processing.The algorithm was validated on the Casia-B dataset and achieved a gait recognition accuracy of 85.811%,with the increase of 2.6%.The model weight was increased by only 6%.The algorithm could effectively reduce the negative influence of complex environment on gait recognition and achieve high-precision gait recognition in complex environment.The experimental results show that the method can achieve more accurate gait recognition with better robustness and generalization ability.

Gait recognitionMulti-feature fusionMorphological processingTriplet smoothing optimizationCasia-B dataset

杨鹏、应娜、李怡菲

展开 >

杭州电子科技大学通信工程学院 浙江杭州 310018

步态识别 多特征融合 形态学处理 三元组平滑优化 Casia-B数据集

浙江省自然科学基金项目

LY16F010013

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(1)
  • 16