计算机应用与软件2024,Vol.41Issue(1) :177-182.DOI:10.3969/j.issn.1000-386x.2024.01.026

基于Faster-RCNN和先验知识的车架VIN码识别方法

FRAME VIN CODE RECOGNITION METHOD BASED ON FASTER-RCNN AND PRIOR KNOWLEDGE

赵珣 张新峰 边浩南
计算机应用与软件2024,Vol.41Issue(1) :177-182.DOI:10.3969/j.issn.1000-386x.2024.01.026

基于Faster-RCNN和先验知识的车架VIN码识别方法

FRAME VIN CODE RECOGNITION METHOD BASED ON FASTER-RCNN AND PRIOR KNOWLEDGE

赵珣 1张新峰 1边浩南1
扫码查看

作者信息

  • 1. 北京工业大学信息学部 北京 100124
  • 折叠

摘要

为了提高车检所工作效率,同时克服对VIN(Vehicle Identification Number)这类长字符串识别准确率低的难题,基于现有深度卷积神经网络的模型,提出以Faster R-CNN为主干网络,并结合先验知识的车架VIN识别模型.根据车架号图像特点,选择Faster R-CNN进行字符级定位和识别的方案.针对长字符识别容易漏字符的现象,使用被遗漏位置的前后字符坐标来定位缺失字符.使用inception网络对补漏得出的字符区域进行识别.灵活使用先验知识使得该方法比只使用Faster R-CNN识别车架号的准确率提高了 31.7百分点,识别率达到了64.77%,这也高于当前主流OCR模型在长度超过15位的文本上的准确率.

Abstract

In order to increase the working efficiency of vehicle inspection office and overcome the problem of low accuracy of long character string recognition,we proposed a VIN(Vehicle Identification Number)recognition model based on the existing deep convolutional neural network model,which combines Faster R-CNN as the backbone network with the prior knowledge of VIN image.According to the characteristic of VIN image,Faster R-CNN was selected for character level positioning and recognition.In order to solve the problem of missing characters in long character recognition,we used the coordinates of the characters before and after the missing position to locate the missing characters.We used the inception network to recognize the character regions obtained from the omission.By using prior knowledge flexibly,the accuracy of our method is 31.7 percentage points higher than the model of using Faster R-CNN only,the recognition rate reaches 64%,and that is also higher than the accuracy of prevailing OCR model in the recognition of character string that longer than 15.

关键词

OCR/Faster/RCNN/先验知识/长字符串

Key words

OCR/Faster R-CNN/Prior knowledge/Long string

引用本文复制引用

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
参考文献量2
段落导航相关论文