首页|基于高效通道注意力机制和特征融合网络的冠心病诊断算法研究

基于高效通道注意力机制和特征融合网络的冠心病诊断算法研究

扫码查看
针对冠心病重要特征不确定、诊断模型预测性能低等因素而导致冠心病早期诊断精度低的问题,提出一种基于高效通道注意力机制和特征融合的网络。通过XGBoost(eXtreme Gradient Boosting)来确定冠心病重要特征,设计数据生成图片的特征组合算法以适用该模型;为提高诊断模型预测性能,采用可以提升模型学习能力和特征利用率的高效通道注意力机制模块和特征融合模块。实验结果表明,在UCI克利夫兰心脏病数据集上,与其他诊断算法相比,该算法优于传统机器学习方法,预测精度可达100%且稳定性好。
CORONARY HEART DISEASE DIAGNOSIS ALGORITHM BASED ON EFFICIENT CHANNEL ATTENTION MECHANISM AND FEATURE FUSION NETWORK
Aimed at the problem of low accuracy of early diagnosis of coronary heart disease due to factors such as uncertain important features of coronary heart disease and low predictive performance of diagnostic models,a network based on efficient channel attention mechanism and feature fusion is proposed.XGBoost(eXtreme Gradient Boosting)was used to determine the important features of coronary heart disease,and a feature combination algorithm for generating images from data was designed to apply this model.In order to improve the predictive performance of diagnostic models,efficient channel attention mechanism modules and feature fusion modules were used to improve the model learning ability and feature utilization.Compared with other diagnostic algorithms on the UCI Cleveland heart disease data set,the experimental results show that the proposed algorithm is superior to traditional machine learning methods,with a prediction accuracy of 100%and good stability.

Coronary heart diseaseEarly diagnosisFeature combination algorithmFeature fusionEfficient channel attention

郭卫涛、帕孜来·马合木提、张洪春

展开 >

新疆大学电气工程学院 新疆乌鲁木齐 830046

湖北职业技术学院计算机学院 湖北孝感 432100

冠心病 早期诊断 特征组合算法 特征融合 高效通道注意力

国家自然科学基金项目

61963034

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(1)
  • 7