计算机应用与软件2024,Vol.41Issue(1) :240-245,296.DOI:10.3969/j.issn.1000-386x.2024.01.035

基于梯度和流形的超像素分割算法

SUPERPIXEL SEGMENTATION BASED ON GRADIENT AND MANIFOLD

陈彤 廖闻剑
计算机应用与软件2024,Vol.41Issue(1) :240-245,296.DOI:10.3969/j.issn.1000-386x.2024.01.035

基于梯度和流形的超像素分割算法

SUPERPIXEL SEGMENTATION BASED ON GRADIENT AND MANIFOLD

陈彤 1廖闻剑2
扫码查看

作者信息

  • 1. 武汉邮电科学研究院 湖北武汉 430074
  • 2. 南京烽火天地通信科技有限公司 江苏南京 210019
  • 折叠

摘要

当今许多图像处理任务常用超像素作为降维手段和边缘优化的依据.针对现有方法分割数量过于依赖经验和存在离散点的问题,提出一种基于梯度和流形距离的超像素数量的分割方法,自适应估算图像适合的超像素数量,令细节的分割更为精准同时减少背景区域的过分割.以BSDS500数据集进行实验,该方法在各项指标上有较好表现,尤其解决了离散点问题,在紧致度上得到巨大提升.

Abstract

In today's image processing tasks,the super pixel is often used as a method of dimensionality reduction for image as well as the basis of edge optimization.A super-pixel segmentation method based on gradient and manifold distance is proposed to solve the problem of experience-dependent segment number and discrete point of existing methods.It estimated the suitable number of superpixels for images adaptively,making segmentation for details more accurate and reducing over-segmentation for background.Experiments were conducted on BSDS500 dataset.We achieved good performance in various indicators.Escpecially,the elimination of discrete points leads to the compact with huge improvement.

关键词

测地线距离/自适应/梯度/超像素/孤立点消除

Key words

Geodesic distance/Adaptive/Gradient/Superpixel/Outlier elimination

引用本文复制引用

基金项目

国家重点研发计划项目(2017YFB1400704)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
浏览量1
参考文献量3
段落导航相关论文