计算机应用与软件2024,Vol.41Issue(2) :41-48,137.DOI:10.3969/j.issn.1000-386x.2024.02.006

基于特征构建及CAE-LSTM的短期电量预测方法

A SHORT-TERM ELECTRICITY FORECASTING APPROACH BASED ON FEATURE CONSTRUCTION AND CAE-LSTM

罗俊然 温蜜 何蔚
计算机应用与软件2024,Vol.41Issue(2) :41-48,137.DOI:10.3969/j.issn.1000-386x.2024.02.006

基于特征构建及CAE-LSTM的短期电量预测方法

A SHORT-TERM ELECTRICITY FORECASTING APPROACH BASED ON FEATURE CONSTRUCTION AND CAE-LSTM

罗俊然 1温蜜 1何蔚2
扫码查看

作者信息

  • 1. 上海电力大学计算机科学与技术学院 上海 201306
  • 2. 公安部第三研究所 上海 200031
  • 折叠

摘要

线损率能够反映企业的管理水平和经济效益,而供售电不同期会导致线损统计存在误差,因此需要进行短期电量预测.针对现有方法未能充分挖掘电量影响因素的问题,提出基于特征构建及CAE-LSTM的短期电量预测方法.通过数据分析构建特征,并使用MIC进行筛选;使用ARIMA预测电量值,并与特征进行数据重构;通过CAE-LSTM对数据进行特征提取,得到预测结果.实验结果表明,提出的方法能够更有效地提取数据特征,实现更高的预测精度.

Abstract

The line loss rate can reflect the management level and economic benefits of the enterprise.The supply and sale of electricity in different periods will cause errors in the line loss statistics,so short-term electricity forecasting is needed.To solve the problems that the existing approaches cannot fully mine the factors affecting the electricity,a short-term electricity forecast approach based on feature construction and CAE-LSTMis proposed.Features were constructed by data analysis,and MIC was employed for screening.ARIMA was employed to forecast the electricity value and new data was reconstructed by features.CAE-LSTM was applied to extract the features of the data and get the predicted result.Experimental results show that the proposed approach can extract data features more effectively and achieve higher prediction accuracy.

关键词

数据分析/特征构建/CAE/LSTM/ARIMA/电量预测/最大信息系数

Key words

Data analysis/Feature construction/CAE/LSTM/ARIMA/Electricity forecasting/Maximum infor-mation coefficient

引用本文复制引用

基金项目

国家自然科学基金项目(61872230)

国家自然科学基金项目(61802249)

国家自然科学基金项目(61702321)

上海市 2019年度"科技创新行动计划"高新技术领域项目(19511103700)

上海市科委项目(20020500600)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
参考文献量16
段落导航相关论文