A PREDICTIVE MODEL FOR ALZHEIMER'S DISEASE BASED ON SELF-ATTENTION MECHANISM
A self-attention mechanism based model is proposed for the prediction of Alzheimer's disease(AD).Magnetic resonance imaging(MRI)images were pre-processed to extract primary features for brain anatomical structures.A self-attention mechanism based feature processing unit(SAFPU)was designed,and by the theory of residual blocks,multiple SAFPUs were stacked to build a reliable network for predicting AD,which could automatically analyze the dependencies of different brain anatomical structures to generate high-level features for MRI images.The empirical results demonstrate the proposed model outperforms existing AD classification methods,which achieves 99.36%(98.90%)of the maximum accuracy for the AD(early stage of AD,i.e.,Mild Cognitive Impairment)classification task.