首页|基于加权KNN与代价敏感多分支深度神经网络的审计数据异常检测

基于加权KNN与代价敏感多分支深度神经网络的审计数据异常检测

扫码查看
面对日益提高的审计客观性和不断增长的审计任务,提升审计的效率和质量正成为一种势在必行的趋势。选取电力行业某企业的财务凭证数据为研究对象,针对财务凭证数量多、数据类型多样和数据正负样本比例严重失衡的问题,提出一种基于加权KNN与代价敏感多分支深度神经网络算法。该算法能够有效地缩小核查范围,且得到的支出存在审计疑点的财务凭证中涵盖尽可能多的审计问题,从而更有助于帮助审计人员提高工作效率。通过对比实验,验证了该算法能够有效发现审计疑点及涵盖审计问题,结果优于现有其他方法。
FRAUD DETECTION OF AUDIT DATA BASED ON WEIGHTED KNN AND COST-SENSITIVE MULTI-BRANCH DEEP NEURAL NETWORK
In the face of increasing audit objectivity and increasing audit tasks,it is imperative to improve the efficiency and quality of audit.In this paper,the financial voucher data of an enterprise in the power industry is selected as the research object.Aimed at the problems of large number of financial documents,diverse data types and serious imbalance of positive and negative data samples,a new algorithm based on weighted KNN and cost-sensitive multi-branch deep neural network is proposed.It could effectively reduce the scope of verification,and the obtained financial documents with audit doubtful points covered as much audit problems as possible in order to help auditors improve their work efficiency.Through comparative experiments,it is verified that the proposed algorithm can effectively find audit doubts and cover audit problems,and the results are better than other existing methods.

Intelligent auditMachine learningArtificial intelligenceFraud detectionCost-sensitiveMulti-branch deep neural network

范斌、宁德军、卢俊哲、陈松伟、沈建

展开 >

国家电网有限公司华东分部 上海 200120

中国科学院上海高等研究院 上海 201210

上海电力大学 上海 200090

智慧审计 机器学习 人工智能 异常检测 代价敏感 多分支深度神经网络

国家电网有限公司华东分部科技项目

52080019000K

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(2)
  • 23