首页|基于图卷积门控循环单元网络模型的交通速度预测

基于图卷积门控循环单元网络模型的交通速度预测

扫码查看
准确的交通预测能够有效解决交通堵塞和环境污染等问题,然而现有预测方法无法充分表征交通数据的特征。针对以上问题,提出一种序列到序列图卷积门控循环单元(Seq2Seq-GCGRU)模型,用于提取交通速度的时空特性和预测。模型由三部分组成,分别用于建模带有时间偏移的交通速度周周期、日周期及临近期信息,还提出一种新的seq2seq训练方法以克服已有方法不适用于时间序列的缺陷。实验结果表明,对比其他常见的交通流预测模型,所提算法具有更高的预测精度,均方根误差(RMSE)与平均绝对误差(MAE)指标至少分别降低25%和24%。
TRAFFIC SPEED FORECASTING BASED ON GRAPH CONVOLUTIONAL GATED RECURRENT UNIT NETWORK MODEL
Accurate traffic forecasting can effectively solve the problems of traffic congestion and environmental pollution,but the existing methods can not fully characterize the features of traffic data.To solve the above problems,a sequential to sequence graph convolution gated recurrent unit(Seq2Seq-GCGRU)model is proposed to extract the temporal and spatial characteristics of traffic speed.The model consisted of three parts,which were used to model the weekly,daily and near-term information of traffic speed with time shifting,and a new seq2seq training method was proposed to overcome the defect that the inherent method was not suitable for time series.The experimental results show that the proposed algorithm has higher prediction accuracy compared with other common traffic flow prediction models.The root mean square error(RMSE)and mean absolute error(MAE)are reduced by at least 25%and 24%respectively.

Traffic speed forecastingGraph convolutionSequence to sequenceSpatial-temporal correlation

谌贵辉、彭娇、李忠兵、陈伍、刘会康、韩春阳、刘安东

展开 >

西南石油大学工程学院 四川 南充 637001

西南石油大学电气信息学院 四川 成都 610500

交通速度预测 图卷积 序列到序列 时空相关性

南充市机器人工程与智能制造重点实验室建设资助项目

19SXHZ0033

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(2)
  • 2