计算机应用与软件2024,Vol.41Issue(2) :109-116.DOI:10.3969/j.issn.1000-386x.2024.02.016

基于图卷积门控循环单元网络模型的交通速度预测

TRAFFIC SPEED FORECASTING BASED ON GRAPH CONVOLUTIONAL GATED RECURRENT UNIT NETWORK MODEL

谌贵辉 彭娇 李忠兵 陈伍 刘会康 韩春阳 刘安东
计算机应用与软件2024,Vol.41Issue(2) :109-116.DOI:10.3969/j.issn.1000-386x.2024.02.016

基于图卷积门控循环单元网络模型的交通速度预测

TRAFFIC SPEED FORECASTING BASED ON GRAPH CONVOLUTIONAL GATED RECURRENT UNIT NETWORK MODEL

谌贵辉 1彭娇 2李忠兵 2陈伍 2刘会康 2韩春阳 2刘安东2
扫码查看

作者信息

  • 1. 西南石油大学工程学院 四川 南充 637001
  • 2. 西南石油大学电气信息学院 四川 成都 610500
  • 折叠

摘要

准确的交通预测能够有效解决交通堵塞和环境污染等问题,然而现有预测方法无法充分表征交通数据的特征.针对以上问题,提出一种序列到序列图卷积门控循环单元(Seq2Seq-GCGRU)模型,用于提取交通速度的时空特性和预测.模型由三部分组成,分别用于建模带有时间偏移的交通速度周周期、日周期及临近期信息,还提出一种新的seq2seq训练方法以克服已有方法不适用于时间序列的缺陷.实验结果表明,对比其他常见的交通流预测模型,所提算法具有更高的预测精度,均方根误差(RMSE)与平均绝对误差(MAE)指标至少分别降低25%和24%.

Abstract

Accurate traffic forecasting can effectively solve the problems of traffic congestion and environmental pollution,but the existing methods can not fully characterize the features of traffic data.To solve the above problems,a sequential to sequence graph convolution gated recurrent unit(Seq2Seq-GCGRU)model is proposed to extract the temporal and spatial characteristics of traffic speed.The model consisted of three parts,which were used to model the weekly,daily and near-term information of traffic speed with time shifting,and a new seq2seq training method was proposed to overcome the defect that the inherent method was not suitable for time series.The experimental results show that the proposed algorithm has higher prediction accuracy compared with other common traffic flow prediction models.The root mean square error(RMSE)and mean absolute error(MAE)are reduced by at least 25%and 24%respectively.

关键词

交通速度预测/图卷积/序列到序列/时空相关性

Key words

Traffic speed forecasting/Graph convolution/Sequence to sequence/Spatial-temporal correlation

引用本文复制引用

基金项目

南充市机器人工程与智能制造重点实验室建设资助项目(19SXHZ0033)

出版年

2024
计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
参考文献量2
段落导航相关论文