首页|基于HLCMEA-SWRELM的水体pH值预测

基于HLCMEA-SWRELM的水体pH值预测

扫码查看
为解决传统水体pH 值预测模型泛化能力差,预测准确度低的问题,提出一种改进思维进化算法(MEA)优化改进极限学习机(ELM)的水体pH值预测方法。在MEA基础上引入混沌理论、莱维飞行及柯西高斯混合变异策略,有效解决MEA早熟、易陷入局部最优的缺点,提高了求解搜索性能。将Morlet小波与反双曲正弦叠加作为ELM的激励函数并引入正则化项,提高了ELM动态逼近性能与泛化能力。将模型运用于太湖水体pH值预测中,实验结果分析表明。相比其他模型,该模型泛化能力好,预测精度高,可为水环境管理与决策提供依据。
PH PREDICTION METHOD BASED ON HLCMEA-SWRELM
In order to solve the problems of poor generalization ability and low prediction accuracy of traditional water pH prediction model,an improved MEA optimized method for improving ELMwater pH prediction is proposed.On the basis of MEA,chaos theory,Levy flight and Cauchy and Gauss mixed mutation strategy were introduced,which effectively solved the shortcomings of MEA that was premature and easy to get into local optimum,and improved the search performance.The superposition of Morlet wavelet and inverse hyperbolic sine was taken as ELM's excitation function,and regularization term was introduced to improve ELMdynamic approximation performance and generalization ability.The model was applied to the pH prediction of Taihu Lake.The results show that compared with other models,the model has better generalization ability and higher prediction accuracy,which can provide a basis for management and decision making.

Levy FlightMind evolutionary algorithmExtreme learning machinepH

陈肖、陈峰

展开 >

南通大学电气工程学院 江苏 南通 226000

莱维飞行 思维进化算法 极限学习机 pH值

2024

计算机应用与软件
上海市计算技术研究所 上海计算机软件技术开发中心

计算机应用与软件

CSTPCD北大核心
影响因子:0.615
ISSN:1000-386X
年,卷(期):2024.41(2)
  • 11